Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.3 - FREE PDF Download

Chapter 7 of Class 12 Maths, "Integrals," is a crucial part of calculus that helps in understanding the concept of integration, which is the reverse process of differentiation. This chapter provides a comprehensive overview of indefinite integrals, definite integrals, and their properties. It is important to grasp these concepts as they form the foundation for more advanced topics in mathematics and various applications in physics and engineering.

toc-symbolTable of Content
toggle-arrow


Ex 7.3 Class 12  focuses on solving integrals using various techniques like substitution, partial fractions, and integration by parts. Students should concentrate on mastering these methods and understanding the fundamental principles of integration. Practicing these exercises will enhance problem-solving skills and prepare students for higher-level studies and competitive exams.


Glance of NCERT Solutions Maths Chapter 7 Integrals - Ex 7.3 Class 12 | Vedantu

  • This chapter introduces the concept of integration, the reverse process of differentiation.

  • Key formulas include the integration by substitution, partial fractions, and integration by parts.

  • Questions include finding integrals using substitution, partial fractions, and by parts, covering both indefinite and definite integrals.

  • Understanding these exercises is crucial as integrals are widely used in higher mathematics, physics, and engineering.

  • This ex 7.3 class 12  helps students develop problem-solving skills and a deeper understanding of integral calculus.

  • Ex 7.3 class 12  consists of 24 questions that cover a variety of integral problems.



Access PDF for Maths NCERT Chapter 7 Integrals Exercise 7.3 Class 12

Exercise 7.3

1. Solve the following: ${{\sin }^{2}}\left( 2x+5 \right)$.

Ans: Given expression ${{\sin }^{2}}\left( 2x+5 \right)$.

Given expression can be written as  

${{\sin }^{2}}\left( 2x+5 \right)=\frac{1-\cos 2\left( 2x+5 \right)}{2}$

$\Rightarrow {{\sin }^{2}}\left( 2x+5 \right)=\frac{1-\cos \left( 4x+10 \right)}{2}$ 

Integration of given expression is

\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\int{\frac{1-\cos \left( 4x+10 \right)}{2}dx}\]

\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}\int{1dx-\frac{1}{2}\int{\cos \left( 4x+10 \right)dx}}\]

\[\Rightarrow \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}x-\frac{1}{2}\left( \frac{\sin \left( 4x+10 \right)}{4} \right)+C\]

\[\therefore \int{{{\sin }^{2}}\left( 2x+5 \right)dx}=\frac{1}{2}x-\frac{1}{8}\sin \left( 4x+10 \right)+C\]


2. Solve the following: $\sin 3x\cos 4x$.

Ans: Given expression $\sin 3x\cos 4x$.

Using the identity $\sin A\cos B=\frac{1}{2}\left\{ \sin \left( A+B \right)+\sin \left( A-B \right) \right\}$ given expression can be written as

$\sin 3x\cos 4x=\frac{1}{2}\left\{ \sin \left( 3x+4x \right)+\sin \left( 3x-4x \right) \right\}$

Integration of above expression is

\[\Rightarrow \int{\sin 3x\cos 4x}dx=\int{\frac{1}{2}\left\{ \sin 7x+\sin \left( -x \right) \right\}dx}\]

\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\int{\left\{ \sin 7x+\sin x \right\}dx}\]

\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\int{\sin 7xdx+\frac{1}{2}\int{\sin x}dx}\]

\[\Rightarrow \int{\sin 3x\cos 4x}dx=\frac{1}{2}\left( \frac{-\cos 7x}{7} \right)-\frac{1}{2}\left( -\cos x \right)+C\]

\[\therefore \int{\sin 3x\cos 4x}dx=\frac{-\cos 7x}{14}+\frac{\cos x}{2}+C\]


3. Solve the following: $\cos 2x\cos 4x\cos 6x$.

Ans: Given expression $\cos 2x\cos 4x\cos 6x$.

Using the identity $\cos A\cos B=\frac{1}{2}\left\{ \cos \left( A+B \right)+\cos \left( A-B \right) \right\}$ given expression can be written as

$\cos 2x\left( \cos 4x\cos 6x \right)=\cos 2x\frac{1}{2}\left\{ \cos \left( 4x+6x \right)+\cos \left( 4x-6x \right) \right\}$

Integration of the above expression is

$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\int{\cos 2x}\left[ \frac{1}{2}\left\{ \cos 10x+\cos \left( -2x \right) \right\} \right]dx$

$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\int{\left[ \frac{1}{2}\left\{ \cos 2x\cos 10x+\cos 2x\cos \left( -2x \right) \right\} \right]}dx$

$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{2}\int{\left[ \left\{ \cos 2x\cos 10x+{{\cos }^{2}}2x \right\} \right]}dx$

Again applying the identity $\cos A\cos B=\frac{1}{2}\left\{ \cos \left( A+B \right)+\cos \left( A-B \right) \right\}$, we get

$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{2}\int{\left[ \left\{ \frac{1}{2}\cos \left( 2x+10x \right)+\cos \left( 2x-10x \right)+\left( \frac{1+\cos 4x}{2} \right) \right\} \right]}dx$$\Rightarrow \int{\cos 2x\left( \cos 4x\cos 6x \right)}=\frac{1}{4}\int{\left[ \cos 12x+\cos 8x+\cos 4x \right]}dx$

$\therefore \int{\cos 2x\cos 4x\cos 6x}=\frac{1}{4}\left[ \frac{\sin 12x}{12}+\frac{\sin 8x}{8}+\frac{\sin 4x}{4} \right]+C$


4. Solve the following: ${{\sin }^{3}}\left( 2x+1 \right)$.

Ans: Given expression ${{\sin }^{3}}\left( 2x+1 \right)$. 

Let $I=\int{{{\sin }^{3}}\left( 2x+1 \right)dx}$

$\Rightarrow I=\int{{{\sin }^{2}}\left( 2x+1 \right)\sin \left( 2x+1 \right)dx}$ 

$\Rightarrow I=\int{\left( 1-{{\cos }^{2}}\left( 2x+1 \right) \right)\sin \left( 2x+1 \right)dx}$

Let \[\cos \left( 2x+1 \right)=t\] 

$\therefore -2\sin \left( 2x+1 \right)dx=dt$ 

Integration becomes

$\Rightarrow I=-\frac{1}{2}\int{\left( 1-{{t}^{2}} \right)dt}$

$\Rightarrow I=-\frac{1}{2}\left( t-\frac{{{t}^{3}}}{3} \right)+C$

Substitute \[\cos \left( 2x+1 \right)=t\],

$\Rightarrow I=-\frac{1}{2}\left( \cos \left( 2x+1 \right)-\frac{{{\cos }^{3}}\left( 2x+1 \right)}{3} \right)+C$

$\therefore \int{{{\sin }^{3}}\left( 2x+1 \right)dx}=\frac{-\cos \left( 2x+1 \right)}{2}+\frac{{{\cos }^{3}}\left( 2x+1 \right)}{3}+C$


5. Solve the following: ${{\sin }^{3}}x{{\cos }^{3}}x$.

Ans: Given expression ${{\sin }^{3}}x{{\cos }^{3}}x$.

Let $I=\int{{{\sin }^{3}}x{{\cos }^{3}}x}dx$ 

$\Rightarrow I=\int{{{\sin }^{2}}x\sin x{{\cos }^{3}}x}dx$

$\Rightarrow I=\int{{{\cos }^{3}}x\left( 1-{{\cos }^{2}}x \right)\sin x}dx$

Let $\cos x=t$ 

$\therefore -\sin dx=dt$ 

Integration becomes

$\Rightarrow I=-\int{{{t}^{3}}\left( 1-{{t}^{2}} \right)}dt$

$\Rightarrow I=-\int{\left( {{t}^{3}}-{{t}^{5}} \right)}dt$

$\Rightarrow I=-\left[ \frac{{{t}^{4}}}{4}-\frac{{{t}^{6}}}{6} \right]+C$

Substitute $\cos x=t$,

$\Rightarrow I=-\left[ \frac{{{\cos }^{4}}x}{4}-\frac{{{\cos }^{6}}x}{6} \right]+C$

$\therefore \int{{{\sin }^{3}}x{{\cos }^{3}}x}dx=\frac{{{\cos }^{6}}x}{6}-\frac{{{\cos }^{4}}x}{4}+C$


6. Solve the following: $\sin x\sin 2x\sin 3x$.  

Ans: Given expression $\sin x\sin 2x\sin 3x$.

Using the identity $\sin A\sin B=\frac{1}{2}\cos \left( A-B \right)-\cos \left( A+B \right)$, given expression can be written as

$\Rightarrow \sin x\sin 2x\sin 3x=\sin x.\frac{1}{2}\cos \left( 2x-3x \right)-\cos \left( 2x+3x \right)$

Integration of given expression is

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\left( \sin x\cos \left( -x \right)-\sin x\cos \left( 5x \right) \right)dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\left( \sin x\cos x-\sin x\cos 5x \right)dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{2}\int{\frac{\sin 2x}{2}dx-\frac{1}{2}\int{\left( \sin x\cos 5x \right)}dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{4}\left( \frac{-\cos 2x}{2} \right)-\frac{1}{2}\int{\left\{ \frac{1}{2}\left( \sin \left( x+5x \right)+\sin \left( x-5x \right) \right) \right\}dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{4}\int{\left\{ \left( \sin 6x+\sin \left( -4x \right) \right) \right\}dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{4}\int{\left\{ \left( \sin 6x+\sin 4x \right) \right\}dx}$

$\Rightarrow \int{\sin x\sin 2x\sin 3x}dx=\frac{-\cos 2x}{8}-\frac{1}{8}\left[ \frac{-\cos 6x}{3}+\frac{\cos 4x}{4} \right]+C$

$\therefore \int{\sin x\sin 2x\sin 3x}dx=\frac{1}{8}\left[ \frac{\cos 6x}{3}-\frac{\cos 4x}{4}-\cos 2x \right]+C$


7. Solve the following: $\sin 4x\sin 8x$. 

Ans: Given expression $\sin 4x\sin 8x$.

Using the identity $\sin A\sin B=\frac{1}{2}\cos \left( A-B \right)-\cos \left( A+B \right)$, given expression can be written as

$\Rightarrow \sin 4x\sin 8x=\frac{1}{2}\cos \left( 4x-8x \right)-\cos \left( 4x+8x \right)$

Integration of given expression is

$\Rightarrow \int{\sin 4x\sin 8x}dx=\frac{1}{2}\int{\left( \cos \left( -4x \right)-\cos \left( 12x \right) \right)dx}$

$\Rightarrow \int{\sin 4x\sin 8x}dx=\frac{1}{2}\int{\left( \cos 4x-\cos 12x \right)dx}$

$\therefore \int{\sin 4x\sin 8x}dx=\frac{1}{2}\left[ \frac{\sin 4x}{4}-\frac{\sin 12x}{12} \right]+C$


8. Solve the following: $\frac{1-\cos x}{1+\cos x}$. 

Ans: Given expression $\frac{1-\cos x}{1+\cos x}$.

Using the identities $2{{\sin }^{2}}\frac{x}{2}=1-\cos x$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$ given expression can be written as 

$\Rightarrow \frac{1-\cos x}{1+\cos x}=\frac{2{{\sin }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$

$\Rightarrow \frac{1-\cos x}{1+\cos x}={{\tan }^{2}}\frac{x}{2}$

Integration of given expression is 

$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\int{\left[ {{\tan }^{2}}\frac{x}{2} \right]dx}$

$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\int{\left[ {{\sec }^{2}}\frac{x}{2}-1 \right]dx}$

$\Rightarrow \int{\frac{1-\cos x}{1+\cos x}dx}=\left[ \frac{\tan \frac{x}{2}}{\frac{1}{2}}-x \right]+C$

$\therefore \int{\frac{1-\cos x}{1+\cos x}dx}=2\tan \frac{x}{2}-x+C$

9. Solve the following: $\frac{\cos x}{1+\cos x}$. 

Ans: Given expression $\frac{\cos x}{1+\cos x}$.

Using the identity $\cos x={{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$ given expression can be written as 

$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$

$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{1}{2}\left[ 1-\frac{{{\sin }^{2}}\frac{x}{2}}{{{\cos }^{2}}\frac{x}{2}} \right]$

$\Rightarrow \frac{\cos x}{1+\cos x}=\frac{1}{2}\left[ 1-{{\tan }^{2}}\frac{x}{2} \right]$

Integration of given expression is 

$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 1-{{\tan }^{2}}\frac{x}{2} \right]dx}$

$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 1-{{\sec }^{2}}\frac{x}{2}+1 \right]dx}$

$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\int{\left[ 2-{{\sec }^{2}}\frac{x}{2} \right]dx}$

$\Rightarrow \int{\frac{\cos x}{1+\cos x}dx}=\frac{1}{2}\left[ 2x-\frac{\tan \frac{x}{2}}{\frac{1}{2}} \right]+C$

$\therefore \int{\frac{\cos x}{1+\cos x}dx}=x-\tan \frac{x}{2}+C$


10. Solve the following: ${{\sin }^{4}}x$. 

Ans: Given expression ${{\sin }^{4}}x$.

Given expression can be written as ${{\sin }^{4}}x={{\sin }^{2}}x{{\sin }^{2}}x$

$\Rightarrow {{\sin }^{4}}x=\left( \frac{1-\cos 2x}{2} \right)\left( \frac{1-\cos 2x}{2} \right)$

$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}{{\left( 1-\cos 2x \right)}^{2}}$

$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)$

$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+\frac{1+\cos 4x}{2}-2\cos 2x \right)$

$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( 1+\frac{1}{2}+\frac{\cos 4x}{2}-2\cos 2x \right)$

$\Rightarrow {{\sin }^{4}}x=\frac{1}{4}\left( \frac{3}{2}+\frac{1}{2}\cos 4x-2\cos 2x \right)$

Integration of given expression is

$\Rightarrow \int{{{\sin }^{4}}x}dx=\frac{1}{4}\int{\left( \frac{3}{2}+\frac{1}{2}\cos 4x-2\cos 2x \right)}dx$

$\Rightarrow \int{{{\sin }^{4}}x}dx=\frac{1}{4}\left[ \frac{3}{2}x+\frac{\sin 4x}{8}-\sin 2x \right]+C$

$\therefore \int{{{\sin }^{4}}x}dx=\frac{3x}{8}+\frac{\sin 4x}{32}-\frac{1}{4}\sin 2x+C$

11. Solve the following: ${{\cos }^{4}}2x$.

Ans: Given expression ${{\cos }^{4}}2x$.

Given expression can be written as  

${{\cos }^{4}}2x={{\left( {{\cos }^{2}}2x \right)}^{2}}$

$\Rightarrow {{\cos }^{4}}2x={{\left( \frac{1+\cos 4x}{2} \right)}^{2}}$

$\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+{{\cos }^{2}}4x+2\cos 4x \right)$

$\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+\frac{1+\cos 8x}{2}+2\cos 4x \right)$

\[\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( 1+\frac{1}{2}+\frac{\cos 8x}{2}+2\cos 4x \right)\]

\[\Rightarrow {{\cos }^{4}}2x=\frac{1}{4}\left( \frac{3}{2}+\frac{\cos 8x}{2}+2\cos 4x \right)\]

Integration of given expression is 

\[\Rightarrow \int{{{\cos }^{4}}2xdx}=\int{\left( \frac{3}{8}+\frac{\cos 8x}{8}+\frac{\cos 4x}{2} \right)dx}\]

\[\therefore \int{{{\cos }^{4}}2xdx}=\frac{3}{8}x+\frac{\sin 8x}{64}+\frac{\sin 4x}{8}+C\]

12. Solve the following: $\frac{{{\sin }^{2}}x}{1+\cos x}$.

Ans: Given expression $\frac{{{\sin }^{2}}x}{1+\cos x}$.

By applying the identity $\sin x=2\sin \frac{x}{2}\cos \frac{x}{2}$ and $\cos x=2{{\cos }^{2}}\frac{x}{2}-1$, given expression can be written as 

  $\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=\frac{{{\left( 2\sin \frac{x}{2}\cos \frac{x}{2} \right)}^{2}}}{2{{\cos }^{2}}\frac{x}{2}}$

$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=\frac{4{{\sin }^{2}}\frac{x}{2}{{\cos }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$

$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=2{{\sin }^{2}}\frac{x}{2}$

$\Rightarrow \frac{{{\sin }^{2}}x}{1+\cos x}=1-\cos x$

Integration of given expression is

$\Rightarrow \int{\frac{{{\sin }^{2}}x}{1+\cos x}dx}=\int{1dx-\int{\cos xdx}}$

$\therefore \int{\frac{{{\sin }^{2}}x}{1+\cos x}dx}=x-\sin x+C$

13. Solve the following: $\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }$. 

Ans: Given expression $\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }$.

We can apply the identity $\cos C-\cos D=-2\sin \frac{C+D}{2}\sin \frac{C-D}{2}$ , we get

 $\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{-2\sin \frac{2x+2\alpha }{2}\sin \frac{2x-2\alpha }{2}}{-2\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\sin \frac{2\left( x+\alpha  \right)}{2}\sin \frac{2\left( x-\alpha  \right)}{2}}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\sin \left( x+\alpha  \right)\sin \left( x-\alpha  \right)}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$

We can apply the identity $\sin 2x=2\sin x\cos x$, we get

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=\frac{\left[ 2\sin \frac{x+\alpha }{2}\cos \frac{x+\alpha }{2} \right]\left[ 2\sin \frac{x-\alpha }{2}\cos \frac{x-\alpha }{2} \right]}{\sin \frac{x+\alpha }{2}\sin \frac{x-\alpha }{2}}$

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=4\cos \frac{x+\alpha }{2}\cos \frac{x-\alpha }{2}$

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=2\left[ \cos \frac{x+\alpha }{2}+\frac{x-\alpha }{2}+\cos \frac{x+\alpha }{2}-\frac{x-\alpha }{2} \right]$

$\Rightarrow \frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }=2\left[ \cos x+\cos \alpha  \right]$

Integration of given expression is

$\Rightarrow \int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }dx}=2\int{\left[ \cos x+\cos \alpha  \right]}dx$

$\therefore \int{\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos \alpha }dx}=2\left[ \sin x+x\cos \alpha  \right]+C$


14. Solve the following: $\frac{\cos x-\sin x}{1+\sin 2x}$. 

Ans: Given expression $\frac{\cos x-\sin x}{1+\sin 2x}$.

We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.

Given expression can be written as  

$\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\sin }^{2}}x+{{\cos }^{2}}x+\sin 2x}$ .

We can apply the identity $\sin 2x=2\sin x\cos x$, we get

 $\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x}$

$\Rightarrow \frac{\cos x-\sin x}{1+\sin 2x}=\frac{\cos x-\sin x}{{{\left( \sin x+\cos x \right)}^{2}}}$

Let $\sin x+\cos x=t$ 

$\therefore \left( \cos x-\sin x \right)dx=dt$ 

Integration of given expression is

$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{\frac{\cos x-\sin x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}}$ 

$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{\frac{dt}{{{t}^{2}}}}}$

$\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=\int{{{t}^{-2}}dt}}$

\[\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-{{t}^{-1}}+C}\]

\[\Rightarrow \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-\frac{1}{t}+C}\]

Substitute $\sin x+\cos x=t$,

\[\therefore \int{\frac{\cos x-\sin x}{1+\sin 2x}dx=-\frac{1}{\sin x+\cos x}+C}\]

15. Solve the following: ${{\tan }^{3}}2x\sec 2x$.

Ans: Given expression ${{\tan }^{3}}2x\sec 2x$.

Given expression can be written as

${{\tan }^{3}}2x\sec 2x={{\tan }^{2}}2x\tan 2x\sec 2x$

$\Rightarrow {{\tan }^{3}}2x\sec 2x=\left( {{\sec }^{2}}2x-1 \right)\tan 2x\sec 2x$

$\Rightarrow {{\tan }^{3}}2x\sec 2x={{\sec }^{2}}2x\tan 2x\sec 2x-\tan 2x\sec 2x$

Integration of given expression is

$\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\int{{{\sec }^{2}}2x\tan 2x\sec 2xdx}-\int{\tan 2x\sec 2xdx}$

$\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\int{{{\sec }^{2}}2x\tan 2x\sec 2xdx}-\frac{\sec 2x}{2}+C$

Let $\sec 2x=t$ 

$\therefore 2\sec 2x\tan 2xdx=dt$ 

Above integral becomes

\[\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{1}{2}\int{{{t}^{2}}dt}-\frac{\sec 2x}{2}+C\]

\[\Rightarrow \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{{{t}^{3}}}{6}-\frac{\sec 2x}{2}+C\]

Substitute $\sec 2x=t$,

\[\therefore \int{{{\tan }^{3}}2x\sec 2xdx}=\frac{{{\left( \sec 2x \right)}^{3}}}{6}-\frac{\sec 2x}{2}+C\]

16. Solve the following: ${{\tan }^{4}}x$. 

Ans: Given expression ${{\tan }^{4}}x$.

Given expression can be written as 

$\Rightarrow {{\tan }^{4}}x={{\tan }^{2}}x{{\tan }^{2}}x$

$\Rightarrow {{\tan }^{4}}x=\left( {{\sec }^{2}}x-1 \right){{\tan }^{2}}x$

$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-{{\tan }^{2}}x$

$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-\left( {{\sec }^{2}}x-1 \right)$

$\Rightarrow {{\tan }^{4}}x={{\sec }^{2}}x{{\tan }^{2}}x-{{\sec }^{2}}x+1$

Integration of given expression is

$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\tan }^{2}}x-{{\sec }^{2}}x+1 \right)}dx$

$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{\left( {{\sec }^{2}}x{{\tan }^{2}}x \right)}dx-\int{{{\sec }^{2}}xdx+\int{1dx}}$

$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{{{\sec }^{2}}x{{\tan }^{2}}x}dx-\tan x+x+C$

Let $\tan x=t$ 

$\therefore {{\sec }^{2}}xdx=dt$ 

$\Rightarrow \int{{{\tan }^{4}}xdx}=\int{{{t}^{2}}}dt-\tan x+x+C$

$\Rightarrow \int{{{\tan }^{4}}xdx}=\frac{{{t}^{3}}}{3}-\tan x+x+C$

Substitute $\tan x=t$,

$\therefore \int{{{\tan }^{4}}xdx}=\frac{1}{3}{{\tan }^{3}}x-\tan x+x+C$


17. Solve the following: $\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$.

Ans: Given expression $\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$.

Given expression can be written as 

$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\frac{{{\sin }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}+\frac{{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}$

$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\frac{\sin x}{{{\cos }^{2}}x}+\frac{\cos x}{{{\sin }^{2}}x}$

$\Rightarrow \frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}=\tan x\sec x+\cot xcosecx$

Integration of given expression is 

$\Rightarrow \int{\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{\tan x\sec xdx}+\int{\cot x\operatorname{cosecx}dx}$

$\therefore \int{\frac{{{\sin }^{3}}x+{{\cos }^{3}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\sec x-cosecx+C$

18. Solve the following: $\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}$.

Ans: Given expression $\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}$.

By applying the identity $\cos 2x=1-2{{\sin }^{2}}x$, we get

 $\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}=\frac{\cos 2x+1-\cos 2x}{{{\cos }^{2}}x}$

$\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}=\frac{1}{{{\cos }^{2}}x}$

$\Rightarrow \frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}={{\sec }^{2}}x$

Integration of given expression is 

$\Rightarrow \int{\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}}dx=\int{{{\sec }^{2}}xdx}$

$\therefore \int{\frac{\cos 2x+2{{\sin }^{2}}x}{{{\cos }^{2}}x}}dx=\tan x+C$

19. Solve the following: $\frac{1}{\sin x{{\cos }^{3}}x}$.

Ans: Given expression $\frac{1}{\sin x{{\cos }^{3}}x}$.

We can apply the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we get

$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{{{\sin }^{2}}x+{{\cos }^{2}}x}{\sin x{{\cos }^{3}}x}$

$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{{{\sin }^{2}}x}{\sin x{{\cos }^{3}}x}+\frac{{{\cos }^{2}}x}{\sin x{{\cos }^{3}}x}$

$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\frac{\sin x}{{{\cos }^{3}}x}+\frac{1}{\sin x\cos x}$

$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\tan x{{\sec }^{2}}x+\frac{{{\cos }^{2}}x}{\frac{\sin x\cos x}{{{\cos }^{2}}x}}$

$\Rightarrow \frac{1}{\sin x{{\cos }^{3}}x}=\tan x{{\sec }^{2}}x+\frac{{{\sec }^{2}}x}{\tan x}$

Integration of given expression is

$\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\int{\tan x{{\sec }^{2}}x}dx+\int{\frac{{{\sec }^{2}}x}{\tan x}}dx$

Let $\tan x=t$ 

$\therefore {{\sec }^{2}}xdx=dt$ 

\[\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\int{t}dt+\int{\frac{1}{\operatorname{t}}}dt\]

\[\Rightarrow \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\frac{{{t}^{2}}}{2}+\log \left| t \right|+C\]

Substitute $\tan x=t$,

\[\therefore \int{\frac{1}{\sin x{{\cos }^{3}}x}}dx=\frac{1}{2}{{\tan }^{2}}x+\log \left| \tan x \right|+C\]

20. Solve the following: $\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}$. 

Ans: Given expression $\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}$.

Given expression can be written as 

$\Rightarrow \frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}=\frac{\cos 2x}{{{\cos }^{2}}x+{{\sin }^{2}}x+2\sin x\cos x}$

We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $2\sin x\cos x=\sin 2x$, we get

 $\Rightarrow \frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}=\frac{\cos 2x}{1+\sin 2x}$

Integration of given expression is

$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\int{\frac{\cos 2x}{1+\sin 2x}dx}$

Let $1+\sin 2x=t$ 

$\therefore 2\cos 2xdx=dt$ 

Integration becomes

$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\int{\frac{1}{t}dt}$

$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| t \right|+C$

Substitute $1+\sin 2x=t$

$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| 1+\sin 2x \right|+C$

$\Rightarrow \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\frac{1}{2}\log \left| {{\left( \cos x+\sin x \right)}^{2}} \right|+C$

$\therefore \int{\frac{\cos 2x}{{{\left( \cos x+\sin x \right)}^{2}}}dx}=\log \left| \left( \cos x+\sin x \right) \right|+C$

21. Solve the following: ${{\sin }^{-1}}\left( \cos x \right)$. 

Ans: Given expression ${{\sin }^{-1}}\left( \cos x \right)$.

Let $\cos x=t$ 

$\therefore \sin x=\sqrt{1-{{t}^{2}}}$ 

$\Rightarrow -\sin xdx=dt$

$\Rightarrow dx=-\frac{dt}{\sin x}$

$\Rightarrow dx=-\frac{dt}{\sqrt{1-{{t}^{2}}}}$

Integration of given expression is

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\int{{{\sin }^{-1}}t\left( \frac{-dt}{\sqrt{1-{{t}^{2}}}} \right)}$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\int{\left( \frac{{{\sin }^{-1}}t}{\sqrt{1-{{t}^{2}}}} \right)dt}$

Let ${{\sin }^{-1}}t=u$ 

$\Rightarrow \frac{1}{\sqrt{1-{{t}^{2}}}}dt=du$ 

Integration becomes

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\int{4du}$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{u}^{2}}}{2}+C$

Substitute ${{\sin }^{-1}}t=u$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\left( {{\sin }^{-1}}t \right)}^{2}}}{2}+C$

Substitute $\cos x=t$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\left[ {{\sin }^{-1}}\left( \cos x \right) \right]}^{2}}}{2}+C$ ……..(1)

We know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\frac{\pi }{2}$ 

$\therefore {{\sin }^{-1}}\left( \cos x \right)=\frac{\pi }{2}-{{\cos }^{-1}}\left( \cos x \right)=\left( \frac{\pi }{2}-x \right)$ 

Substitute in eq. (1), we get

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{-{{\left( \frac{\pi }{2}-x \right)}^{2}}}{2}+C$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{1}{2}\left( \frac{{{\pi }^{2}}}{2}+{{x}^{2}}-\pi x \right)+C$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=-\frac{{{\pi }^{2}}}{4}-\frac{{{x}^{2}}}{2}+\frac{1}{2}\pi x+C$

$\Rightarrow \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{\pi x}{2}-\frac{{{x}^{2}}}{2}+\left( C-\frac{{{\pi }^{2}}}{4} \right)$

$\therefore \int{{{\sin }^{-1}}\left( \cos x \right)dx}=\frac{\pi x}{2}-\frac{{{x}^{2}}}{2}+{{C}_{1}}$

22. Solve the following: $\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}$. 

Ans: Given expression $\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}$.

Given expression can be written as

$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left( a-b \right)}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$

$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left[ \left( x-b \right)-\left( x-a \right) \right]}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$

$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \frac{\sin \left( x-b \right)\cos \left( x-a \right)-\cos \left( x-b \right)\sin \left( x-a \right)}{\cos \left( x-a \right)\cos \left( x-b \right)} \right]$

$\Rightarrow \frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}=\frac{1}{\sin \left( a-b \right)}\left[ \tan \left( x-b \right)-\tan \left( x-b \right) \right]$

Integration of given expression is

$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ \tan \left( x-b \right)-\tan \left( x-b \right) \right]dx}$

$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ -\log \left| \cos \left( x-b \right) \right|+\log \cos \left( x-a \right) \right]}$

$\Rightarrow \int{\frac{1}{\cos \left( x-a \right)\cos \left( x-b \right)}dx}=\int{\frac{1}{\sin \left( a-b \right)}\left[ \log \left| \frac{\cos \left( x-a \right)}{\cos \left( x-b \right)} \right| \right]}+C$

23. Solve the following: $\int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$ is equal to

  1. $\tan x+\cot x+C$ 

  2. $\tan x+cosecx+C$ 

  3. $-\tan x+\cot x+C$ 

  4. $\tan x+\sec x+C$ 

Ans: Given expression $\int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.

Given expression can be written as

$\Rightarrow \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{\frac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}-\int{\frac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$

$\Rightarrow \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\int{{{\sec }^{2}}xdx}-\int{cose{{c}^{2}}xdx}$

$\therefore \int{\frac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\tan x+\cot x+C$

Therefore, option A is the correct answer.

24. Solve the following: $\int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}$ equals

  1. $-\cot \left( e{{x}^{x}} \right)+C$ 

  2. $\tan \left( x{{e}^{x}} \right)+C$ 

  3. $\tan \left( {{e}^{x}} \right)+C$

  4. $\cot \left( {{e}^{x}} \right)+C$

Ans: Given expression $\int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}$.

Let ${{e}^{x}}x=t$ 

$\therefore \left( {{e}^{x}}.x+{{e}^{x}}.1 \right)dx=dt$ 

$\Rightarrow {{e}^{x}}\left( x+1 \right)dx=dt$

Integration of given expression is

$\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\int{\frac{dt}{{{\cos }^{2}}t}}$

\[\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\int{{{\sec }^{2}}t}dt\]

\[\Rightarrow \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\tan t+C\]

Substitute ${{e}^{x}}x=t$,

\[\therefore \int{\frac{{{e}^{x}}\left( 1+x \right)}{{{\cos }^{2}}\left( {{e}^{x}}x \right)}dx}=\tan \left( {{e}^{x}}x \right)+C\]

Therefore, option B is the correct answer.


Conclusion

Chapter 7 of Class 12 Mathematics, focusing on Integrals, is crucial for understanding calculus. Exercise 7.3 Class 12 Maths delves into techniques of integration, which are essential for solving complex problems in higher mathematics. Important topics include integration by substitution, integration by parts, and partial fractions. Mastery of these methods is vital, as they are frequently tested in exams. Students should focus on practicing various types of problems, understanding the underlying principles, and applying the correct techniques in class 12 maths ex 7.3.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers)

8

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

9

Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.3

1. What is the Concept of Integral Calculus in Class 12 Maths Chapter 7 Exercise 7.3?

The concept around the development of integral calculus tackles different problems that revolve around mathematics. This concept saves the efforts of users who find it difficult to tackle the different solutions of the given type:

  • Finding a function when they are provided with a derivative

  • Problems in finding areas when it’s bounded by graphs and bound by certain conditions.

These two problems are the bases that lead to providing forms that allow integrals, e.g., indefinite and definite integrals when put together develop Integral Calculus. This part is widely covered and explained in Exercise 7.3 Class 12 Maths.

2. Is Studying from Exercise 7.3 Class 12 NCERT Solutions helpful?

Studying from the NCERT solutions that are based out of Exercise 7.3 Maths Class 12, helps students in ways more than one. To begin with, the solutions are completely focused on explaining the toughest and important questions of the integrals from its roots and initiate an easier learning experience of the Ex 7.3 Class 12 Maths. The solutions have been demonstrated by a dedicated pool of teachers and are focused on helping students grasp the different concepts that are included in the intervals section. The Ex 7.3 Class 12 Maths Solutions provided are mainly developed for the students appearing in Class 12 Board exams for the current year as per the CBSE curriculum.

3. Which are the most important topics covered in Chapter 7 Exercise 7.3 of Class 12 Maths?

Chapter 7 of Class 12 Maths NCERT is known as “Integrals”. This is a crucial chapter in the syllabus of Class 12 Maths and holds a significant weightage in terms of marks. While the chapter covers various important topics, the most important ones that students shall prepare well and practise regularly include Exercise 7.3, which includes Integration by Substitution, Integration using Partial, and Fractions Integration by Parts.

4. How many exercises and questions are there in Chapter 7 of Class 12 Maths apart from Exercise 7.3 in Chapter 7?

Chapter 7-Integrals includes a total of 11 exercises. The following are the number of questions in each exercise:

  • Exercise 7.1 - 22 Questions

  • Exercise 7.2 - 39 Questions

  • Exercise 7.3 - 24 Questions

  • Exercise 7.4 - 25 Questions

  • Exercise 7.5 - 23 Questions

  • Exercise 7.6 - 24 Questions

  • Exercise 7.7 - 11 Questions

  • Exercise 7.8 - Six Questions

  • Exercise 7.9 - 22 Questions

  • Exercise 7.10 - 10 Questions

  • Exercise 7.11 - 21 Questions

5. Do I need to practise all the questions provided in Exercise 7.3 of Chapter 7  of Class 12 Maths NCERT Solutions?

Questions in your Maths exams can be picked up from anywhere from your Class 12 Maths NCERT. It is not possible to be certain about which questions may or may not appear in your exam. Hence, it is strongly advised that students practice all the questions provided in NCERT Solutions for Exercise 7.3 of Chapter 7 Integrals of Class 12 Maths. Practising all the questions will reduce the possibility of losing any marks in the exam.

6. Where can I find NCERT Solutions for Exercise 7.3 of Chapter 7 Integrals of Class 12 Maths?

Referring to NCERT Solutions can help students develop a proper understanding of the questions while preparing for their Class 12 Maths exam. At Vedantu, subject experts provide NCERT Solutions that depict each step of the answer for students to be able to grasp the methods and calculations done in each answer. You can find NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.3 on Vedantu’s website. These solutions are available at free of cost on Vedantu website(vedantu.com) and mobile app as well.

7. Why are definite integrals important in class 12 exercise 7.3 ?

In Class 12 Exercise 7.3, definite integrals are crucial because they help calculate the exact area under a curve between two specific points. This calculation is essential in various fields such as physics, engineering, and economics. For example, they can be used to determine the total distance traveled by an object or the accumulated quantity of a substance over time. Understanding definite integrals enables you to solve real-world problems involving continuous data.

8. What are the key concepts to focus on in Exercise 7.3?

In Exercise 7.3, focus on setting up the definite integrals correctly by identifying the function and the limits of integration. It’s important to apply the fundamental theorem of calculus, which connects differentiation and integration. Practice evaluating the antiderivative at the upper and lower limits of the interval. Ensure you understand how to interpret the results within the context of the problem. Mastery of these steps is crucial for solving area-related problems.

9. Are there any specific functions that are often used in these problems in class 12 ex 7.3?

Yes, problems in class 12 ex 7.3 often involve common functions like polynomials, and trigonometric functions. Exponential functions are also frequently used. Familiarize yourself with integrating these types of functions, as they form the basis of many questions. Understanding their properties and antiderivatives will help in solving definite integrals more efficiently.

10. How do I handle integrals with complex functions in exercise 7.3 class 12?

In exercise 7.3 class 12, when dealing with complex functions, try to simplify the integrand by breaking it down into simpler parts. Use techniques like substitution to make the integrand easier to work with. Integration by parts is another useful method, especially for products of functions. Practice these techniques to become comfortable with transforming and solving more complicated integrals. This approach will make seemingly difficult problems more manageable.