Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7 - Integrals Exercise 7.6

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Maths Class 12 Chapter 7 Exercise 7.6 Integrals - FREE PDF Download

NCERT topics present in Exercise 7.6 Class 12 Maths Solutions are mainly integration with primary and crucial methods. Integration methods include partial fraction integration, integration by substitution and parts. Class 12 Maths entirely has problems on integrals under the section of integration by factors. Class 12 NCERT Solutions for Maths question and answer set is divided into part 1 and part 2 with a solution book. Here, we have provided the solutions for Exercise 7.6 Maths Class 12. The answers will help you prepare for the final examination. Our expert faculty have solved Ex 7.6 class 12 Maths as per the latest CBSE guidelines and syllabus.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Class 12 Chapter 7 Exercise 7.6 Integrals - FREE PDF Download
2. Glance on NCERT Solutions Class 12 Maths Chapter 7 Exercise 7.6 | Vedantu
3. Formulas Used in Class 12 Chapter 7 Exercise 7.6 
4. Access NCERT Solutions for Class 7 Maths Chapter 12 - Integrals Exercise 7.6
5. Conclusion
6. Class 12 Maths Chapter 7: Exercises Breakdown
7. CBSE Class 12 Maths Chapter 7 Other Study Materials
8. NCERT Solutions for Class 12 Maths | Chapter-wise List
9. Related Links for NCERT Class 12 Maths in Hindi
10. Important Related Links for NCERT Class 12 Maths
FAQs


Glance on NCERT Solutions Class 12 Maths Chapter 7 Exercise 7.6 | Vedantu

  • NCERT Solutions Maths Chapter 7 Exercise 7.6 Class 12, this exercise tells about solving differential equations using various methods.

  • Mastering the concept of finding the antiderivative of a function, essentially the function whose derivative is the original function.

  • Understanding how to calculate the area under a curve enclosed by a function and the x-axis.

  • Identify the two functions (u and v) whose product you want to integrate.

  • Choose u such that its derivative (u') is simpler than itself. Conversely, v should be a function whose integral (∫v(x)dx) is simpler than itself.

  • There are 24 fully solved questions and solutions in class 12th Maths chapter 7 Integrals Exercise 7.6.


Formulas Used in Class 12 Chapter 7 Exercise 7.6 

  • The formula for integration in class 12 ex 7.6 :

  • ∫ u(x)v'(x) dx = u(x)v(x) - ∫ u'(x)v(x) dx

  • Here, u and v are the two functions you want to integrate.

  • Understanding the parts:

  • ∫ u(x)v'(x) dx: This is the integral of the product of u(x) and the derivative of v(x).

  • u(x)v(x): This is the product of the original functions u(x) and v(x).

  • ∫ u'(x)v(x) dx: This is the integral of the derivative of u(x) multiplied by the original function v(x).

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 7 Maths Chapter 12 - Integrals Exercise 7.6

1. $x\sin x$

Ans:  Let $I=\int{x}\sin xdx$

Consider $\text{u}=\text{x}$ and $\text{v}=\sin \text{x}$and integrating by parts, to obtain  

$I=\int{x}\sin xdx-\int{\left\{ \left( \dfrac{d}{dx}x \right)\int{\sin }xdx \right\}}dx$

$=x(-\cos x)-\int{1}.(-\cos x)dx$

$=-x\cos x+\sin x+C$


2. $x\sin 3x$

Ans: Let $\text{I}=\int{x}\sin 3xdx$

Consider $\text{u}=\text{x}$ and $\text{v}=\sin 3\text{x}$ and integrating by parts, to obtain  

$I=x\int{\sin }3xdx-\int{\left\{ \left( \dfrac{d}{dx}x \right)\int{\sin }3xdx \right\}}$

$=x\left( \dfrac{-\cos 3x}{3} \right)-\int{1}\cdot \left( \dfrac{-\cos 3x}{3} \right)dx$

$=\dfrac{-x\cos 3x}{3}+\dfrac{1}{3}\int{\cos }3xdx=\dfrac{-x\cos 3x}{3}+\dfrac{1}{9}\sin 3x+C$


3. ${{x}^{2}}{{e}^{x}}$

Ans:  Let $I=\int{{{x}^{2}}}{{e}^{x}}dx$

Consider  $\text{u}={{\text{x}}^{2}}\,\,and\,\,\text{v}={{\text{e}}^{x}}$

$I={{x}^{2}}\int{{{e}^{x}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{x}^{2}} \right)\int{{{e}^{x}}}dx \right\}}dx$

$={{x}^{2}}{{e}^{x}}-\int{2}x-{{e}^{x}}dx$

$={{x}^{2}}{{e}^{x}}-2\int{x}\cdot {{e}^{x}}dx$

Again using integration by parts, to obtain

$={{x}^{2}}{{e}^{x}}-2\left[ x\cdot \int{{{e}^{x}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{x}^{2}} \right)\int{{{e}^{x}}}dx \right\}}dx \right]$

$={{x}^{2}}{{e}^{x}}-2\left[ x{{e}^{x}}-\int{{{e}^{x}}}dx \right]$

Simplifying,

$={{x}^{2}}{{e}^{x}}-2\left[ x{{e}^{x}}-{{e}^{x}} \right]$

$={{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+2{{e}^{x}}+C$

$={{e}^{x}}\left( {{x}^{2}}-2x+2 \right)+C$


4. $x\log x$

Ans:  Let $I=\int{x}\log xdx$

Consider $\text{u}=\log \text{x}\,\,\,\,and\,\,\,\text{v}=\text{x}$ and integrating by parts, to obtain

$I=\log x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{x}dx \right\}}dx$

$=\log x\cdot \dfrac{{{x}^{2}}}{2}-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}\log x}{2}\cdot \sqrt{\dfrac{x}{2}}dx=\dfrac{{{x}^{2}}\log x}{2}-\dfrac{{{x}^{2}}}{4}+C$


5. $x\log 2x$

Ans:  Let $I=\int{x}\log 2xdx$

Consider $u=\log 2x$ and $v=x$and integrating by parts, to obtain

$I=\log 2x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}2\log x \right)\int{x}dx \right\}}dx$

$=\log 2x\cdot \dfrac{{{x}^{2}}}{2}-\int{\dfrac{2}{2x}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}\log 2x}{2}-\int{\dfrac{x}{2}}dx$

Integrating using the power rule

$=\dfrac{{{x}^{2}}\log 2x}{2}-\dfrac{{{x}^{2}}}{4}+C$


6. ${{x}^{2}}\log x$

Ans: Let $I=\int{{{x}^{2}}}\log xdx$

Consider $u=\log x$and $v={{x}^{2}}$ and integrating by parts, to obtain

$I=\log x\int{{{x}^{2}}}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{{{x}^{2}}}dx \right\}}dx$

$=\log x\left( \dfrac{{{x}^{3}}}{3} \right)-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{3}}}{3}dx$

Integrating using the power rule

$=\dfrac{{{x}^{3}}\log x}{3}-\int{\dfrac{{{x}^{2}}}{3}}dx=\dfrac{{{x}^{3}}\log x}{3}-\dfrac{{{x}^{3}}}{9}+C$


7. $x{{\sin }^{-1}}x$

Ans: Let $I=\int{x}{{\sin }^{-1}}xdx$

Consider $u={{\sin }^{-1}}x\,\,and\,\,\,v=x$ and integrating by parts, to obtain

$I={{\sin }^{-1}}x\int{x}dx\int{\left\{ \left( \dfrac{d}{dx}{{\sin }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\sin }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}\cdot \dfrac{{{x}^{2}}}{2}dx$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\dfrac{-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}}dx$

Adding and subtracting by 1

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\left\{ \dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}-\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\int{\left\{ \sqrt{1-{{x}^{2}}}-\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}}dx$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\left\{ \int{\sqrt{1-{{x}^{2}}}}dx-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}dx \right\}$

$=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{1}{2}\left\{ \dfrac{x}{2}\sqrt{1-{{x}^{2}}}+\dfrac{1}{2}{{\sin }^{-1}}x-{{\sin }^{-1}}x \right\}+C$

Simplifying,      $=\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{2}+\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C=\dfrac{1}{4}\left( 2{{x}^{2}}-1 \right){{\operatorname{in}}^{-1}}x+\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+C$


8. $x{{\tan }^{-1}}x$

Ans: Let $I=\int{x}{{\tan }^{-1}}xdx$

Consider $\text{u}={{\tan }^{-1}}\text{x}$ and $\text{v}=\text{x}$and integrating by parts, to obtain

$I={{\tan }^{-1}}x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\tan }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)\int{\dfrac{1}{1+{{x}^{2}}}}\cdot \dfrac{{{x}^{2}}}{2}dx=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{1+{{x}^{2}}}}dx$

Adding and subtracting by -1

$=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\left( \dfrac{{{x}^{2}}+1}{1+{{x}^{2}}}-\dfrac{1}{1+{{x}^{2}}} \right)}dx=\dfrac{{{x}^{2}}{{\tan }^{-1}}x}{2}-\dfrac{1}{2}\int{\left( 1-\dfrac{1}{1+{{x}^{2}}} \right)}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\operatorname{lan}}^{-1}}x}{2}-\dfrac{1}{2}\left( x-{{\tan }^{-1}}x \right)+C=\dfrac{{{x}^{2}}}{2}{{\tan }^{-1}}x-\dfrac{x}{2}+\dfrac{1}{2}{{\tan }^{-1}}x+C$


9. $x{{\cos }^{-1}}x$

Ans: Let $I=\int{x}{{\cos }^{-1}}xdx$

Taking $u={{\cos }^{-1}}x$ and $\text{v}=\text{x}$and integrating by parts, to obtain

$I={{\cos }^{-1}}x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\cos }^{-1}}x \right)\int{x}dx \right\}}dx$

$={{\cos }^{-1}}x\dfrac{{{x}^{2}}}{2}-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}\cdot \dfrac{{{x}^{2}}}{2}dx$

Adding and subtracting by -1

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}}dx$

Simplifying,

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\left\{ \sqrt{1-{{x}^{2}}}+\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right) \right\}}dx$

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\int{\sqrt{1-{{x}^{2}}}}dx-\dfrac{1}{2}\int{\left( \dfrac{-1}{\sqrt{1-{{x}^{2}}}} \right)}dx$

$=\dfrac{{{x}^{2}}{{\cos }^{-1}}x}{2}-\dfrac{1}{2}{{I}_{1}}-\dfrac{1}{2}{{\cos }^{-1}}x....\left( 1 \right)$

Where ${{I}_{1}}=\int{\sqrt{1-{{x}^{2}}}}dx$

$\Rightarrow {{I}_{1}}=x\int{\sqrt{1-{{x}^{2}}}}-\int{\dfrac{d}{dx}}\sqrt{1-{{x}^{2}}}\int{x}dx\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\int{\dfrac{-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}}dx$

$\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}}dx\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\left\{ \int{\sqrt{1-{{x}^{2}}}}dx+\int{\dfrac{-dx}{\sqrt{1-{{x}^{2}}}}} \right\}$

$\Rightarrow {{I}_{1}}=x\sqrt{1-{{x}^{2}}}-\left\{ {{I}_{1}}+{{\cos }^{-1}}x \right\}\Rightarrow 2{{I}_{1}}=x\sqrt{1-{{x}^{2}}}-{{\cos }^{-1}}x$

$\therefore {{I}_{1}}=\dfrac{x}{2}\sqrt{1-{{x}^{2}}}-\dfrac{1}{2}{{\cos }^{-1}}x$

Substituting in (1), we get

$I=\dfrac{x{{\cos }^{-1}}x}{2}-\dfrac{1}{2}\left( \dfrac{x}{2}\sqrt{1-{{x}^{2}}}-\dfrac{1}{2}{{\cos }^{-1}}x \right)-\dfrac{1}{2}{{\cos }^{-1}}x$

Simplifying,

$=\dfrac{\left( 2{{x}^{2}}-1 \right)}{4}{{\cos }^{-1}}x-\dfrac{x}{4}\sqrt{1-{{x}^{2}}}+C$


10. ${{\left( {{\sin }^{-1}}x \right)}^{2}}$

Ans: Let $I=\int{{{\left( {{\sin }^{-1}}x \right)}^{2}}}\cdot 1dx$

Consider $\text{u}={{\left( {{\sin }^{-1}}\text{x} \right)}^{2}}$ and $\text{v}=1$and integrating by parts, to obtain

$I=\int{\left( {{\sin }^{-1}}x \right)}\cdot \int{1}dx-\int{\left\{ \dfrac{d}{dx}{{\left( {{\sin }^{-1}}x \right)}^{2}}\cdot \int{1}.dx \right\}}dx$

$={{\left( {{\sin }^{-1}}x \right)}^{2}}x-\int{\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}\cdot xdx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\int{{{\sin }^{-1}}}x\cdot \left( \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)dx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ {{\sin }^{-1}}x\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\sin }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx \right\}}dx \right]$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+\left[ {{\sin }^{-1}}x\cdot 2\sqrt{1-{{x}^{2}}}-\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}}\cdot 2\sqrt{1-{{x}^{2}}}dx \right]$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-\int{2}dx$

$=x{{\left( {{\sin }^{-1}}x \right)}^{2}}+2\sqrt{1-{{x}^{2}}}{{\sin }^{-1}}x-2x+C$


11. $\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}$

Ans:  Let $I=\int{\dfrac{x{{\cos }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}dx$

Multiplying and dividing by 2

$I=\dfrac{-1}{2}\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}\cdot {{\cos }^{-1}}xdx$

Consider  $\text{u}={{\cos }^{-1}}\text{x}$ and $\text{v}=\left( \dfrac{-2x}{\sqrt{1-{{x}^{2}}}} \right)$and integrating by parts, to obtain

$I=\dfrac{-1}{2}\left[ {{\cos }^{-1}}x\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\cos }^{-1}}x \right)\int{\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}}dx \right\}}dx \right]$

$=\dfrac{-1}{2}\left[ {{\cos }^{-1}}x\cdot 2\sqrt{1-{{x}^{2}}}-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}}\cdot 2\sqrt{1-{{x}^{2}}}dx \right]=\dfrac{-1}{2}\left[ 2\sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+\int{2}dx \right]$

Simplifying,

$=\dfrac{-1}{2}\left[ 2\sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+2x \right]+C$

$=-\left[ \sqrt{1-{{x}^{2}}}{{\cos }^{-1}}x+x \right]+C$


12. $x{{\sec }^{2}}x$

Ans: Let $I=\int{x}{{\sec }^{2}}xdx$

Consider$\text{u}=\text{x}$ and $\text{v}={{\sec }^{2}}\text{x}$ and integrating by parts, to obtain

$I=x\int{{{\sec }^{2}}}xdx-\int{\left\{ \left\{ \dfrac{d}{dx}x \right\}\int{{{\sec }^{2}}}xdx \right\}}dx$

$=x\tan x-\int{1}\cdot \tan xdx$

$=x\tan x+\log |\cos x|+C$


13. ${{\tan }^{-1}}x$

Ans: Let $I=\int{1}\cdot {{\tan }^{-1}}xdx$

Consider $\text{u}={{\tan }^{-1}}\text{x}$ and $\text{v}=1$ and integrating by parts, to obtain

$I={{\tan }^{-1}}x\int{1}dx-\int{\left\{ \left( \dfrac{d}{dx}{{\tan }^{-1}}x \right)\int{1}.dx \right\}}dx={{\tan }^{-1}}xx-\int{\dfrac{1}{1+{{x}^{2}}}}xd$

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\int{\dfrac{2x}{1+{{x}^{2}}}}dx$

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+C$ 

$=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+C$


14. $x{{\left( \log x \right)}^{2}}dx$

Ans:  $I=\int{x}{{(\log x)}^{2}}dx$

Consider$u={{(\log x)}^{2}}$ and $v=1$ and integrating by parts, to obtain

$I={{(\log )}^{2}}\int{x}dx-\int{\left[ \left\{ {{\left( \dfrac{d}{dx}\log x \right)}^{2}} \right\}\int{x}dx \right]}dx$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \int{2}\log x\cdot \dfrac{1}{x}\cdot \dfrac{{{x}^{2}}}{2}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\int{x}\log xdx$

Again using integration by parts, to obtain

$I=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \log x\int{x}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{x}dx \right\}}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\left[ \dfrac{{{x}^{2}}}{2}-\log x-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{2}}}{2}dx \right]$

$=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\dfrac{{{x}^{2}}}{2}\log x+\dfrac{1}{2}\int{x}dx=\dfrac{{{x}^{2}}}{2}{{(\log x)}^{2}}-\dfrac{{{x}^{2}}}{2}\log x+\dfrac{{{x}^{2}}}{4}+C$


15. $\left( {{x}^{2}}+1 \right)\log x$

Ans: Let $I=\int{\left( {{x}^{2}}+1 \right)}\log xdx=\int{{{x}^{2}}}\log xdx+\int{\log }xdx$

Let $\text{I}={{\text{I}}_{1}}+{{\text{I}}_{2}}\ldots (1)$

Where,${{I}_{1}}=\int{{{x}^{2}}}\log xdx\,\,\,\,\,\,and\,\,\,{{\text{I}}_{2}}=\int{\log }xdx$

${{I}_{1}}=\int{{{x}^{2}}}\log xdx$ 

Consider$\text{u}=\log \text{x}$ and $v=x^2$ and integrating by parts, to obtain

${{I}_{1}}=\log x-\int{{{x}^{2}}}dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{{{x}^{2}}}dx \right\}}dx$

$=\log x\cdot \dfrac{{{x}^{3}}}{3}-\int{\dfrac{1}{x}}\cdot \dfrac{{{x}^{3}}}{3}dx=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{1}{3}\int{{{x}^{2}}}dx$

$=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+{{C}_{1}}\quad \ldots (2)$

${{I}_{2}}=\int{\log }xdx$

Consider $\text{u}=\log \text{x}$ and $\text{v}=1$and integrating by parts, to obtain

${{I}_{2}}=\log x\int{1}.dx-\int{\left\{ \left( \dfrac{d}{dx}\log x \right)\int{1}.dx \right\}}$

$=\log x\cdot x-\int{\dfrac{1}{x}}xdx$

$=x\log x-x..\left( 3 \right)$

Using equations (2) and (3) in (1), we get

$I=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+{{C}_{1}}+x\log x-x+{{C}_{2}}$

$=\dfrac{{{x}^{3}}}{3}\log x-\dfrac{{{x}^{3}}}{9}+x\log x-x+\left( {{C}_{1}}+{{C}_{2}} \right)$

$=\left( \dfrac{{{x}^{3}}}{3}+x \right)\log x-\dfrac{{{x}^{3}}}{9}-x+C$


16. ${{e}^{x}}\left( \sin x+\cos x \right)$

Ans: Consider$I=\int{{{e}^{x}}}(\sin x+\cos x)dx$

Consider$f(x)=\sin x$

${{f}^{\prime }}(x)=\cos x$

$I=\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx$

Since, $\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx={{e}^{x}}f(x)+C$

$\therefore I={{e}^{x}}\sin x+C$


17. $\dfrac{x{{e}^{x}}}{{{\left( 1+x \right)}^{2}}}$

Ans:  Consider $I=\int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\int{{{e}^{x}}}\left\{ \dfrac{x}{{{(1+x)}^{2}}} \right\}dx$

$=\int{{{e}^{x}}}\left\{ \dfrac{1+x-1}{{{(1+x)}^{2}}} \right\}dx=\int{{{e}^{x}}}\left\{ \dfrac{1}{1+x}-\dfrac{1}{{{(1+x)}^{2}}} \right\}dx$

Here, $f(x)=\dfrac{1}{1+x}\quad {{f}^{\prime }}(x)=\dfrac{-1}{{{(1+x)}^{2}}}$

$\Rightarrow \int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx$

Since, $\int{{{e}^{x}}}\left\{ f(x)+{{f}^{\prime }}(x) \right\}dx={{e}^{x}}f(x)+C$

$\therefore \int{\dfrac{x{{e}^{x}}}{{{(1+x)}^{2}}}}dx=\dfrac{{{e}^{x}}}{1+x}+C$


18. Integrate the function - ${{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)$

Ans: First simplify –${{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)$

It is known that – 

$1+\sin x={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$

$1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$

$\therefore {{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)={{e}^{x}}\left( \dfrac{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}} \right)$

$={{e}^{x}}\left( \dfrac{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}{2{{\cos }^{2}}\dfrac{x}{2}} \right)$

$=\dfrac{1}{2}{{e}^{x}}\left( \dfrac{{{\left( \sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right)}^{2}}}{{{\cos }^{2}}\dfrac{x}{2}} \right)$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \dfrac{\sin \dfrac{x}{2}+\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}{{\left( \tan \dfrac{x}{2}+1 \right)}^{2}}$

$=\dfrac{1}{2}{{e}^{x}}\left( {{\tan }^{2}}\dfrac{x}{2}+1+2\tan \dfrac{x}{2} \right)$

But, $1+{{\tan }^{2}}\dfrac{x}{2}={{\sec }^{2}}\dfrac{x}{2}$

$=\dfrac{1}{2}{{e}^{x}}\left( {{\sec }^{2}}\dfrac{x}{2}+2\tan \dfrac{x}{2} \right)$

$={{e}^{x}}\left( \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}+\tan \dfrac{x}{2} \right)$

$\Rightarrow {{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)={{e}^{x}}\left( \dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}+\tan \dfrac{x}{2} \right)$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

If we say, $f(x)=\tan \dfrac{x}{2}\Rightarrow f'(x)=\dfrac{1}{2}{{\sec }^{2}}\dfrac{x}{2}$

Thus, we get – $\int{{{e}^{x}}\left( \dfrac{1+\sin x}{1+\cos x} \right)}dx={{e}^{x}}\tan \dfrac{x}{2}+C$


19. Integrate the function - ${{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)$

Ans: Say, $I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}$

Suppose, $f(x)=\dfrac{1}{x}\Rightarrow f'(x)=-\dfrac{1}{{{x}^{2}}}$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

Thus, we get – $I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}=\dfrac{{{e}^{x}}}{x}+C$


20. Integrate the function - $\dfrac{(x-3){{e}^{x}}}{{{(x-1)}^{3}}}$

Ans: $\int{{{e}^{x}}\dfrac{(x-3)}{{{(x-1)}^{3}}}dx=\int{{{e}^{x}}\left[ \dfrac{(x-1-2)}{{{(x-1)}^{3}}} \right]dx}}$

$=\int{{{e}^{x}}\left[ \dfrac{(x-1)}{{{(x-1)}^{3}}}-\dfrac{2}{{{(x-1)}^{3}}} \right]dx}$

$=\int{{{e}^{x}}\left[ \dfrac{1}{{{(x-1)}^{2}}}-\dfrac{2}{{{(x-1)}^{3}}} \right]dx}$

Suppose, $f(x)=\dfrac{1}{{{(x-1)}^{2}}}\Rightarrow f'(x)=-\dfrac{2}{{{(x-1)}^{3}}}$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

Thus, $\int{{{e}^{x}}\dfrac{(x-3)}{{{(x-1)}^{3}}}dx=\dfrac{{{e}^{x}}}{{{(x-1)}^{2}}}+C}$


21. Integrate the function - ${{e}^{2x}}\sin x$

Ans: Say,  $I=\int{{{e}^{2x}}\sin xdx}$

Perform Integration by parts – $\int{uv}dx=u\int{vdx}-\int{\left( u'\int{vdx} \right)dx}$

With –$u=\sin x\text{   }v={{e}^{2x}}$

$I=\int{{{e}^{2x}}\sin x}dx=\sin x\int{{{e}^{2x}}dx}-\int{\left[ \left( \dfrac{d}{dx}\sin x \right)\int{{{e}^{2x}}dx} \right]dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\int{\left[ \left( \cos x \right)\dfrac{{{e}^{2x}}}{2} \right]dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\int{\left( {{e}^{2x}}\cos x \right)dx}$

Perform Integration by parts for – $\int{\left( {{e}^{2x}}\cos x \right)dx}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\int{{{e}^{2x}}dx}-\int{\left[ \left( \dfrac{d}{dx}\cos x \right)\int{{{e}^{2x}}dx} \right]dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\dfrac{{{e}^{2x}}}{2}-\int{\left[ \left( -\sin x \right)\dfrac{{{e}^{2x}}}{2} \right]dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{1}{2}\left\{ \cos x\dfrac{{{e}^{2x}}}{2}+\dfrac{1}{2}\int{(\sin x){{e}^{2x}}dx} \right\}$

$=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}-\dfrac{1}{4}\left\{ \int{(\sin x){{e}^{2x}}dx} \right\}$

But, $I=\int{{{e}^{2x}}\sin xdx}$

$\Rightarrow I=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}-\dfrac{1}{4}I$

$\Rightarrow I+\dfrac{1}{4}I=\sin x\dfrac{{{e}^{2x}}}{2}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow \dfrac{5}{4}I=\dfrac{{{e}^{2x}}\sin x}{2}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow \dfrac{5}{4}I=\dfrac{2{{e}^{2x}}\sin x}{4}-\dfrac{{{e}^{2x}}\cos x}{4}$

$\Rightarrow 5I={{e}^{2x}}(2\sin x-\cos x)$

Thus, we get – $I=\dfrac{{{e}^{2x}}}{5}(2\sin x-\cos x)+C$.


22. Integrate the function - ${{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)$

Ans: Say, $x=\tan \theta \text{ }\Rightarrow \text{dx=se}{{\text{c}}^{2}}\theta d\theta $

$\therefore {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta } \right)$

But, $\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta }$

$\Rightarrow {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+{{\tan }^{3}}\theta } \right)=\therefore {{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)={{\sin }^{-1}}\left( \sin 2\theta  \right)=2\theta $

Therefore, $\int{{{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)dx}=\int{2\theta \text{se}{{\text{c}}^{2}}\theta d\theta }$

$=2\int{\theta \text{se}{{\text{c}}^{2}}\theta d\theta }$

Perform Integration by parts – $\int{uv}dx=u\int{vdx}-\int{\left( u'\int{vdx} \right)dx}$

With –$u=\theta \text{   }v={{\sec }^{2}}\theta $

$2\int{\theta \text{se}{{\text{c}}^{2}}\theta d\theta }=2\left\{ \theta \int{{{\sec }^{2}}\theta d\theta }-\int{\left[ \left( \dfrac{d}{d\theta }\theta  \right)\int{{{\sec }^{2}}\theta d\theta } \right]d\theta } \right\}$

$=2\left\{ \theta \tan \theta -\int{\left[ \tan \theta  \right]d\theta } \right\}$

$=2\left\{ \theta \tan \theta -(-\log |\cos \theta |) \right\}+C$

$=2\left\{ \theta \tan \theta +\log |\cos \theta | \right\}+C$

Replace $\theta ={{\tan }^{-1}}x$

$=2\left\{ {{\tan }^{-1}}x\tan ({{\tan }^{-1}}x)+\log |\cos ({{\tan }^{-1}}x)| \right\}+C$

It is known that – ${{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}}$

$=2\left\{ {{\tan }^{-1}}x(x)+\log |\cos ({{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}})| \right\}+C$

$=2\left\{ x{{\tan }^{-1}}x+\log |\dfrac{1}{\sqrt{1+{{x}^{2}}}}| \right\}+C$

$=2\left\{ x{{\tan }^{-1}}x+\log {{(1+{{x}^{2}})}^{-\dfrac{1}{2}}} \right\}+C$

Here, $\log {{m}^{n}}=n\log m$

$=2\left\{ x{{\tan }^{-1}}x-\dfrac{1}{2}\log (1+{{x}^{2}}) \right\}+C$

$=2x{{\tan }^{-1}}x-\log (1+{{x}^{2}})+C$

Thus, $\int{{{\sin }^{-1}}\left( \dfrac{2x}{1+{{x}^{3}}} \right)dx}=2x{{\tan }^{-1}}x-\log (1+{{x}^{2}})+C$


23. Choose the correct answer: $\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx$ equals

  1. $\dfrac{1}{3}{{e}^{{{x}^{3}}}}+C$

  2. $\dfrac{1}{3}{{e}^{{{x}^{2}}}}+C$

  3. $\dfrac{1}{2}{{e}^{{{x}^{3}}}}+C$

  4. $\dfrac{1}{2}{{e}^{{{x}^{2}}}}+C$

Ans: Say, $I=\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx$

Suppose, $t={{x}^{3}}\Rightarrow dt=3{{x}^{2}}dx$

Rewriting the equation – $I=\int{{{x}^{2}}{{e}^{{{x}^{3}}}}}dx=\dfrac{1}{3}\int{{{e}^{t}}}dt$

$\Rightarrow I=\dfrac{1}{3}\int{{{e}^{t}}}dt=\dfrac{1}{3}{{e}^{t}}+C$

Replacing $t={{x}^{3}}$

$\Rightarrow I=\dfrac{1}{3}{{e}^{{{x}^{3}}}}+C$

The correct option is A.


24. Choose the correct answer: $\int{{{e}^{x}}\sec x(1+\tan x)}dx$

  1. ${{e}^{x}}\cos x+C$

  2. ${{e}^{x}}\sec x+C$

  3. ${{e}^{x}}\sin x+C$

  4. ${{e}^{x}}\tan x+C$

Ans: Say, $I=\int{{{e}^{x}}\sec x(1+\tan x)}dx$

$\Rightarrow I=\int{{{e}^{x}}(\sec x+\sec x\tan x)}dx$

Suppose, $f(x)=\sec x\Rightarrow f'(x)=\sec x\tan x$

It is known that, $\int{{{e}^{x}}\left\{ f(x)+f'(x) \right\}dx=}{{e}^{x}}f(x)+C$

$\Rightarrow I=\int{{{e}^{x}}(\sec x+\sec x\tan x)}dx={{e}^{x}}\sec x+C$

Thus, $I={{e}^{x}}\sec x+C$

The correct option is B.


Conclusion

NCERT for Chapter 7 Exercise 7.6 in Class 12 Mathematics, as provided by Vedantu, has been a crucial learning experience. Through solving a series of problems in class 12 maths ex 7.6 involving integration of rational functions, we've grasped fundamental techniques like partial fraction decomposition and trigonometric substitutions. Understanding these methods is key to mastering integration. It's essential to focus on practicing these methods extensively to build confidence and proficiency. By doing so, we not only enhance our mathematical skills but also lay a solid foundation for tackling more complex problems in the future.


Class 12 Maths Chapter 7: Exercises Breakdown

S.No.

Chapter 7 - Integrals Exercises in PDF Format

1

Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs)

2

Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs)

4

Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs)

5

Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs)

6

Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs)

7

Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers)

8

Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs)

9

Class 12 Maths Chapter 7 Exercise 7.10 - 10 Questions & Solutions (8 Short Answers, 2 MCQs)

10

Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions



CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 7 - Integrals Exercise 7.6

1. What are the Advantages of Ex 7.6 Class 12 Maths NCERT Solutions?

Not only study material, but you also have extra exercises to practice. The first step to do is read the entire Ex 7.6 Class 12 Maths Solutions and learn the concepts. Then you can easily copy down some of the solved examples from the material. All the sums are done following a good number of steps. If you don't follow the same steps for exams, then you will not score good marks. In Ex 7.6 Class 12 Maths Solutions, there is step marking. Hence you need to do all the correct steps and get the proper answer to achieve full marks. Using shortcut methods to arrive at the final answer somehow won't fetch you marks. There are 24 solutions with questions in Maths NCERT Solutions Class 12 Chapter 7 Exercise 7.6. Other activities also have solutions.

2. How to Differentiate Between Indefinite and Definite Integrals from Maths NCERT Class 12 Ex 7.6 Solutions?

Definite integrals are those which have both lower and upper limits given for an integral. In reality, you are calculating the area under the curve of x = c and x = d for function f(x) with a lower limit as c and an upper limit as b. For indefinite integrals, no upper or lower limits are provided. Here x can have a range of solutions because you calculate a general solution for a family of the same functions like f(x). In indefinite integrals, we need to add a fixed constant c, and the notation is written along with the solution we get. So this is the fundamental difference between definite and indefinite integrals of Exercise 7.6 Class 12 Maths NCERT solutions.

3. Where can I find NCERT Solutions for Exercise 7.6 of Chapter 7 of Class 12 Maths?

NCERT Solutions for all classes and subjects can be easily found on Vedantu. These solutions have been provided by various subject experts at Vedantu to help students who may need some assistance in answering questions that are provided in the NCERT Books. The solutions are specially written in a language that students can easily understand. You can find the NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.6 on Vedantu. These solutions are available at free of cost on Vedantu website(vedantu.com) and mobile app as well.

4. Is it important to practise examples given in Exercise 7.6 of Chapter 7 of Class 12 Maths?

Examples provided in the Exercise 7.6 of Chapter 7 of Class 12 Maths hold equal importance as the other questions in various exercises. Often questions based on the examples are asked in the exams and hence, practicing them will help you avoid losing any marks. Most of the questions in exercises are also based on these examples and practicing the examples will help you understand and solve the exercises easily.

5. How many questions are there in the NCERT Solutions for Exercise 7.6 of Chapter 7 of Class 12 Maths?

The NCERT Solutions for Exercise 7.6 of Chapter 7 of Class 12 Maths available on Vedantu include a total of 24 questions. Students can find step-by-step solutions for each of these questions in simple language designed to enhance their understanding of the various concepts that are a part of Chapter 7. You can also find and download chapter-wise solutions for all other exercises provided by Vedantu on its official website. These solutions are available at free of cost on Vedantu website(vedantu.com) and mobile app as well.

6. Is NCERT Solutions for Exercise 7.6 difficult?

No, it is not difficult. You need to practice regularly and enhance your clarity of the concepts of this chapter. Make sure you have a good grip on this exercise and you revise everything that is taught in school daily. Make sure to refer to Vedantu’s NCERT solutions, revision notes and important questions of Class 12 Maths Chapter 7 Exercise 7.6. These are prepared by subject matter experts and are 100% accurate.

7. What topics are covered in Exercise 7.6?

Exercise 7.6 covers a range of integral-solving techniques. Students will learn methods such as substitution, partial fractions, and integration by parts. These techniques are crucial for solving complex integrals. Mastering these methods will greatly aid in tackling more advanced mathematical problems.

8. What is the main focus of Exercise 7.6 in Chapter 7 of Class 12 Maths?

Exercise 7.6 focuses on evaluating integrals using various techniques such as substitution, integration by parts, and partial fractions. It helps students practice different methods to solve definite and indefinite integrals.

9. How important is understanding the substitution method for solving problems in Exercise 7.6?

Understanding the substitution method is crucial for Exercise 7.6 as many integrals can be simplified significantly using an appropriate substitution. This method often transforms a complex integral into a simpler form that is easier to evaluate.