NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.3 - FREE PDF Download
Explore the NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.3, focusing on "Methods of Solving First Order, First Degree Differential Equations." This exercise covers techniques for solving first-order, first-degree differential equations with the method of separating variables, a crucial part of the Class 12 Maths syllabus. The solutions provide clear, step-by-step guidance on applying these methods, helping students understand how to approach such equations effectively. This chapter is essential for mastering key concepts and preparing for exams, ensuring a solid grasp of differential equations as outlined in the CBSE syllabus.
Glance on NCERT Solutions Maths Chapter 9 Exercise 9.3 Class 12 | Vedantu
In Exercise 9.3 of Class 12 Maths Chapter 9, the focus is on "Methods of Solving First Order, First Degree Differential Equations." This section discusses three key methods for solving these types of differential equations.
Differential Equations with Variables Separable: Learn how to solve equations where variables can be separated to simplify the problem.
Vedantu provides clear, detailed explanations for each method, aiding in better understanding.
Helps build a strong foundation in differential equations, crucial for mastering the subject.
Access NCERT Solutions for Maths Class 12 Chapter 9 - Differential Equations
Exercise 9.3
1. Find the general solution for $\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{1- cos x}}{\text{1+ cos x}}$ .
Ans: The given differential equation is $\frac{\text{dy}}{\text{dx}}\text{=}\frac{\text{1- cos x}}{\text{1+ cos x}}$.
Use trigonometric half–angle identities to simplify:
$\frac{dy}{dx}=\frac{1-\cos x}{1+\cos x}$
$\Rightarrow \frac{dy}{dx}=\frac{2{{\sin }^{2}}\frac{x}{2}}{2{{\cos }^{2}}\frac{x}{2}}$
$\Rightarrow \frac{dy}{dx}={{\tan }^{2}}\frac{x}{2}$
$\Rightarrow \frac{dy}{dx}={{\sec }^{2}}\frac{x}{2}-1$
Separate the differentials and integrate:
$\int dy=\int \left( {{\sec }^{2}}\frac{x}{2}-1 \right)dx$
$\Rightarrow y=\int {{\sec }^{2}}\frac{x}{2}dx-\int dx$
$\Rightarrow y=2\tan \frac{x}{2}-x+C$
Thus the general solution of given differential equation is $\text{y = 2tan}\frac{\text{x}}{\text{2}}\text{ - x + C}$.
2. Find the general solution for $\frac{\text{dy}}{\text{dx}}\text{=}\sqrt{\text{4 - }{{\text{y}}^{\text{2}}}}\left( \text{-2 y 2} \right)$ .
Ans: The given differential equation is $\frac{\text{dy}}{\text{dx}}\text{=}\sqrt{\text{4 - }{{\text{y}}^{\text{2}}}}\left( \text{-2 y 2} \right)$.
Simplify the expression:
$\frac{dy}{dx}=\sqrt{4-{{y}^{2}}}$
$\Rightarrow \frac{dy}{\sqrt{4-{{y}^{2}}}}=dx$
Use standard integration:
$\int \frac{dy}{\sqrt{4-{{y}^{2}}}}=\int dx$
$\Rightarrow {{\sin }^{-1}}\frac{y}{2}=x+C$
$\Rightarrow \frac{y}{2}=\sin \left( x+C \right)$
$\Rightarrow y=2\sin \left( x+C \right)$
Thus the general solution of given differential equation is $\text{y = 2 sin}\left( \text{x + C} \right)$.
3. Find the general solution for $\frac{\text{dy}}{\text{dx}}\text{+ y =1}\left( \text{y}\ne \text{1} \right)$ .
Ans: The given differential equation is $\frac{\text{dy}}{\text{dx}}\text{+ y =1}\left( \text{y}\ne \text{1} \right)$.
Simplify the expression:
$\frac{dy}{dx}+y=1$
$\Rightarrow \frac{dy}{dx}=1-y$
$\Rightarrow \frac{dy}{1-y}=dx$
Use standard integration:
$\int \frac{dy}{1-y}=\int dx$
$\Rightarrow -\log \left( 1-y \right)=x+C$
$\Rightarrow \log \left( 1-y \right)=-\left( x+C \right)$
$\Rightarrow 1-y={{e}^{-\left( x+C \right)}}$
$y=1-A{{e}^{-x}}\,\left( A={{e}^{-C}} \right)$
Thus the general solution of given differential equation is $\text{y=1- A}{{\text{e}}^{\text{-x}}}\,$.
4. Find the general solution for $\text{se}{{\text{c}}^{\text{2}}}\text{x}\,\text{tany}\,\text{dx+se}{{\text{c}}^{\text{2}}}\text{y}\,\text{tanx}\,\text{dy=0}$.
Ans: The given differential equation is:
${{\sec }^{2}}x\tan ydx+{{\sec }^{2}}y\tan xdy=0$.
Divide both side by $\text{tan x tan y}$:
$\frac{{{\sec }^{2}}x\tan ydx+{{\sec }^{2}}y\tan xdy}{\tan x\tan y}=0$
\[\Rightarrow \frac{{{\sec }^{2}}x}{\tan x}dx+\frac{{{\sec }^{2}}y}{\tan y}dy=0\]
Integrate both side:
$\int \frac{{{\sec }^{2}}x}{\tan x}dx+\int \frac{{{\sec }^{2}}y}{\tan y}dy=0$
$\Rightarrow \int \frac{{{\sec }^{2}}y}{\tan y}dy=-\int \frac{{{\sec }^{2}}x}{\tan x}dx$ ……(1)
Use a substitution method for integration. Substitute $\text{tan x = u}$:
For integral on RHS:
$\Rightarrow \tan x=u$
$\Rightarrow {{\sec }^{2}}xdx=du$
$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\int \frac{du}{u}$
$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\log u$
$\Rightarrow \int \frac{{{\sec }^{2}}x}{\tan x}dx=\log \left( \tan x \right)$
Thus evaluating result form (1):
$\Rightarrow \log \left( \tan y \right)=-\log \left( \tan x \right)+\log \left( C \right)$
$\Rightarrow \log \left( \tan y \right)=\log \left( \frac{C}{\tan x} \right)$
$\Rightarrow \tan x\tan y=C$
Thus the general solution of given differential equation is $\text{tan x tan y = C}$.
5. Find the general solution for $\left( {{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}} \right)\text{dy-}\left( {{\text{e}}^{\text{x}}}\text{-}{{\text{e}}^{\text{-x}}} \right)\text{dx=0}$ .
Ans: The given differential equation is:
$\left( {{e}^{x}}+{{e}^{-x}} \right)dy-\left( {{e}^{x}}-{{e}^{-x}} \right)dx=0$.
Simplify the expression:
$dy=\left[ \frac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]dx$
Integrate both side:
$\int dy=\int \left[ \frac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]dx$ ……(1)
Use a substitution method for integration. Substitute \[{{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}}\text{=t}\]:
For integral on RHS:
$\Rightarrow {{e}^{x}}+{{e}^{-x}}=t$
$\Rightarrow \left( {{e}^{x}}-{{e}^{-x}} \right)dx=dt$
$\Rightarrow \int \left[ \frac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]dx=\int \frac{dt}{t}$ s
$\Rightarrow \int \left[ \frac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]dx=\ln t+C$
$\Rightarrow \int \left[ \frac{{{e}^{x}}-{{e}^{-x}}}{{{e}^{x}}+{{e}^{-x}}} \right]dx=\log \left( {{e}^{x}}+{{e}^{-x}} \right)+C$
Thus evaluating result form (1):
$y=\log \left( {{e}^{x}}+{{e}^{-x}} \right)+C$
Thus the general solution of given differential equation is $\text{y=log}\left( {{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}} \right)\text{+C}$.
6. Find the general solution for $\frac{\text{dy}}{\text{dx}}\text{=}\left( \text{1+}{{\text{x}}^{\text{2}}} \right)\left( \text{1+}{{\text{y}}^{\text{2}}} \right)$.
Ans: The given differential equation is:
$\frac{dy}{dx}=\left( 1+{{x}^{2}} \right)\left( 1+{{y}^{2}} \right)$.
Simplify the expression:
$\frac{dy}{1+{{y}^{2}}}=\left( 1+{{x}^{2}} \right)dx$
Integrate both side:
$\int \frac{dy}{1+{{y}^{2}}}=\int \left( 1+{{x}^{2}} \right)dx$
Use standard integration:
${{\tan }^{-1}}y=\int dx+\int {{x}^{2}}dx$
$\Rightarrow {{\tan }^{-1}}y=x+\frac{{{x}^{3}}}{3}+C$
Thus the general solution of given differential equation is $\text{ta}{{\text{n}}^{\text{-1}}}\text{y=x+}\frac{{{\text{x}}^{\text{3}}}}{\text{3}}\text{+C}$.
7. Find the general solution for $\text{ylog y dx-xdy=0}$.
Ans: The given differential equation is:
$y\log ydx-xdy=0$.
Simplify the expression:
$y\log ydx=xdy$
$\Rightarrow \frac{dx}{x}=\frac{dy}{y\log y}$
Integrate both side:
$\int \frac{dy}{y\log y}=\int \frac{dx}{x}$ ……(1)
Use substitution method for integration on LHS. Substitute \[\text{log y=t}\]:
$\log y=t$
$\Rightarrow \frac{1}{y}dy=dt$
$\Rightarrow \int \frac{dy}{y\log y}=\int \frac{dt}{t}$
$\Rightarrow \int \frac{dy}{y\log y}=\log t$
$\Rightarrow \int \frac{dy}{y\log y}=\log \left( \log y \right)$
Evaluating expression (1):
$\log \left( \log y \right)=\log x+\log C$
$\Rightarrow \log \left( \log y \right)=\log Cx$
$\Rightarrow \log y=Cx$
$\Rightarrow y={{e}^{Cx}}$
Thus the general solution of given differential equation is $\text{y=}{{\text{e}}^{\text{Cx}}}$.
8. Find the general solution for ${{\text{x}}^{\text{5}}}\frac{\text{dy}}{\text{dx}}\text{=-}{{\text{y}}^{\text{5}}}$.
Ans: The given differential equation is:
${{x}^{5}}\frac{dy}{dx}=-{{y}^{5}}$.
Simplify the expression:
$\frac{dy}{{{y}^{5}}}=-\frac{dx}{{{x}^{5}}}$
Integrate both side:
$\int \frac{dy}{{{y}^{5}}}=-\int \frac{dx}{{{x}^{-5}}}$
\[\Rightarrow \int {{y}^{-5}}dy=-\int {{x}^{-5}}dx\]
$\Rightarrow \frac{{{y}^{-5+1}}}{-5+1}=-\frac{{{x}^{-5+1}}}{-5+1}+C$
$\Rightarrow \frac{{{y}^{-4}}}{-4}=-\frac{{{x}^{-4}}}{-4}+C$
$\Rightarrow {{x}^{-4}}+{{y}^{-4}}=-4C$
$\Rightarrow {{x}^{-4}}+{{y}^{-4}}=A\,\,\,\,\left( A=-4C \right)$
Thus the general solution of given differential equation is ${{\text{x}}^{\text{-4}}}\text{+}{{\text{y}}^{\text{-4}}}\text{=A}$.
9. Find the general solution for $\frac{\text{dy}}{\text{dx}}\text{=si}{{\text{n}}^{\text{-1}}}\text{x}$.
Ans: The given differential equation is:
$\frac{dy}{dx}={{\sin }^{-1}}x$.
Simplify the expression:
$dy={{\sin }^{-1}}xdx$
Integrate both side:
$\int dy=\int {{\sin }^{-1}}xdx$
\[\Rightarrow y=\int 1\times {{\sin }^{-1}}xdx\]
Use product rule of integration:
$\int {{\sin }^{-1}}xdx={{\sin }^{-1}}x\int dx-\int \left( \frac{1}{\sqrt{1-{{x}^{2}}}}\int dx \right)dx$
$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x-\int \frac{x}{\sqrt{1-{{x}^{2}}}}dx$
Substitute $\text{1-}{{\text{x}}^{\text{2}}}\text{=}{{\text{t}}^{\text{2}}}$
$1-{{x}^{2}}={{t}^{2}}$
$\Rightarrow -2xdx=2tdt$
$\Rightarrow -xdx=tdt$
Evaluating the integral:
$\frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\frac{A}{x+1}+\frac{Bx+C}{{{x}^{2}}+1}$
$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+\int \frac{tdt}{\sqrt{{{t}^{2}}}}$
$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+t+C$
$\Rightarrow \int {{\sin }^{-1}}xdx=x{{\sin }^{-1}}x+\sqrt{1-{{x}^{2}}}+C$
$\Rightarrow y=x{{\sin }^{-1}}x+\sqrt{1-{{x}^{2}}}+C$
Thus the general solution of given differential equation is $\text{y=xsi}{{\text{n}}^{\text{-1}}}\text{x+}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}\text{+C}$,
10. Find the general solution for ${{\text{e}}^{\text{x}}}\text{tanydx+}\left( \text{1-}{{\text{e}}^{\text{x}}} \right)\text{se}{{\text{c}}^{\text{2}}}\text{ydy=0}$.
Ans: The given differential equation is:
${{e}^{x}}\tan ydx+\left( 1-{{e}^{x}} \right){{\sec }^{2}}ydy=0$.
Simplify the expression:
$\left( 1-{{e}^{x}} \right){{\sec }^{2}}ydy=-{{e}^{x}}\tan ydx$
$\Rightarrow \frac{{{\sec }^{2}}y}{\tan y}dy=-\frac{{{e}^{x}}}{\left( 1-{{e}^{x}} \right)}dx$
Integrate both side:
$\int \frac{{{\sec }^{2}}y}{\tan y}dy=-\int \frac{{{e}^{x}}}{\left( 1-{{e}^{x}} \right)}dx$ ……(1)
Substitute $\text{tan y=u}$
$\tan y=u$
\[\Rightarrow {{\sec }^{2}}y=du\]
Evaluating the LHS integral of (1):
$\Rightarrow \int \frac{{{\sec }^{2}}y}{\tan y}dy=\int \frac{du}{u}$
$\Rightarrow \int \frac{{{\sec }^{2}}y}{\tan y}dy=\log u$
$\Rightarrow \int \frac{{{\sec }^{2}}y}{\tan y}dy=\log \left( \tan y \right)$
Substitute $\text{1-}{{\text{e}}^{x}}\text{=v}$
$1-{{e}^{x}}=v$
$\Rightarrow -{{e}^{x}}dx=dv$
Evaluating the RHS integral of (1):
$\Rightarrow -\int \frac{{{e}^{x}}}{\left( 1-{{e}^{x}} \right)}dx=\int \frac{dv}{v}$
$\Rightarrow -\int \frac{{{e}^{x}}}{\left( 1-{{e}^{x}} \right)}dx=\log v$
$\Rightarrow -\int \frac{{{e}^{x}}}{\left( 1-{{e}^{x}} \right)}dx=\log \left( 1-{{e}^{x}} \right)$
Therefore the integral (1) will be:
$\log \left( \tan y \right)=\log \left( 1-{{e}^{x}} \right)+\log C$
$\Rightarrow \log \left( \tan y \right)=\log C\left( 1-{{e}^{x}} \right)$
$\Rightarrow \tan y=C\left( 1-{{e}^{x}} \right)$
Thus the general solution of given differential equation is $\text{tany=C}\left( \text{1-}{{\text{e}}^{\text{x}}} \right)$,
11. Find the particular solution of $\left( {{\text{x}}^{\text{3}}}\text{+}{{\text{x}}^{\text{2}}}\text{+x+1} \right)\frac{\text{dy}}{\text{dx}}\text{=2}{{\text{x}}^{\text{2}}}\text{+x;}\,\,\text{y=1,}\,\text{x=0}$ to satisfy the given condition.
Ans: The given differential equation is:
$\left( {{x}^{3}}+{{x}^{2}}+x+1 \right)\frac{dy}{dx}=2{{x}^{2}}+x;\,\,y=1,\,x=0$.
Simplify the expression:
$\frac{dy}{dx}=\frac{2{{x}^{2}}+x}{\left( {{x}^{3}}+{{x}^{2}}+x+1 \right)}$
$\Rightarrow \frac{dy}{dx}=\frac{2{{x}^{2}}+x}{\left( {{x}^{3}}+x+{{x}^{2}}+1 \right)}$
$\Rightarrow \frac{dy}{dx}=\frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}$
$\Rightarrow dy=\frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}dx$
Integrate both side:
$\int dy=\int \frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}dx$ ……(1)
Use partial fraction method to simplify the RHS:
$\frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\frac{A}{x+1}+\frac{Bx+C}{{{x}^{2}}+1}$
$\Rightarrow 2{{x}^{2}}+x=A\left( {{x}^{2}}+1 \right)+\left( Bx+C \right)\left( x+1 \right)$
\[\Rightarrow 2{{x}^{2}}+x=\left( A+B \right){{x}^{2}}+\left( B+C \right)x+\left( A+C \right)\]
By comparing coefficients:
$A+B=2$
$B+C=1$
$A+C=0$
Solving this we get:
$\frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\frac{\left( \frac{1}{2} \right)}{x+1}+\frac{\left( \frac{3}{2} \right)x+\left( -\frac{1}{2} \right)}{{{x}^{2}}+1}$
$\Rightarrow \frac{2{{x}^{2}}+x}{\left( x+1 \right)\left( {{x}^{2}}+1 \right)}=\frac{1}{2}\left( \frac{1}{x+1}+\frac{3x-1}{{{x}^{2}}+1} \right)$
Rewriting the integral(1):
$y=\frac{1}{2}\int \left( \frac{1}{x+1}+\frac{3x-1}{{{x}^{2}}+1} \right)dx$
\[\Rightarrow y=\frac{1}{2}\int \frac{1}{x+1}dx+\frac{1}{2}\int \frac{3x-1}{{{x}^{2}}+1}dx\]
\[\Rightarrow y=\frac{1}{2}\log \left( x+1 \right)+\frac{3}{2}\int \frac{x}{{{x}^{2}}+1}dx-\frac{1}{2}\int \frac{1}{{{x}^{2}}+1}dx\]
\[\Rightarrow y=\frac{1}{2}\log \left( x+1 \right)+\frac{3}{4}\int \frac{2x}{{{x}^{2}}+1}dx-\frac{1}{2}{{\tan }^{-1}}x\]
\[\Rightarrow y=\frac{1}{2}\log \left( x+1 \right)+\frac{3}{4}\log \left( {{x}^{2}}+1 \right)-\frac{1}{2}{{\tan }^{-1}}x+C\]
For $y=1$ when $\text{x=0}$.
\[1=\frac{1}{2}\log \left( 0+1 \right)+\frac{3}{4}\log \left( 0+1 \right)-\frac{1}{2}{{\tan }^{-1}}0+C\]
\[\Rightarrow C=1\]
Thus the required particular solution is :
$\Rightarrow y=\frac{1}{2}\log \left( x+1 \right)+\frac{3}{4}\log \left( {{x}^{2}}+1 \right)-\frac{1}{2}{{\tan }^{-1}}x+1$.
12. Find the particular solution of $\text{x}\left( {{\text{x}}^{\text{2}}}\text{-1} \right)\frac{\text{dy}}{\text{dx}}\text{=1}$; $\text{y=0}$ when $\text{x=2}$ to satisfy the given condition.
Ans: The given differential equation is:
$x\left( {{x}^{2}}-1 \right)\frac{dy}{dx}=1$; $y=0$ when $x=2$
Simplify the expression:
$x\left( {{x}^{2}}-1 \right)\frac{dy}{dx}=1$
$\Rightarrow dy=\frac{dx}{x\left( {{x}^{2}}-1 \right)}$
$\Rightarrow dy=\frac{dx}{x\left( x-1 \right)\left( x+1 \right)}$
Integrate both side:
$\int dy=\int \frac{dx}{x\left( x-1 \right)\left( x+1 \right)}$ ……(1)
Use partial fraction method to simplify the RHS:
$\frac{1}{x\left( x-1 \right)\left( x+1 \right)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$
$\Rightarrow 1=A\left( {{x}^{2}}-1 \right)+Bx\left( x+1 \right)+Cx\left( x-1 \right)$
\[\Rightarrow 1=\left( A+B+C \right){{x}^{2}}+\left( B-C \right)x-A\]
By comparing coefficients:
$A+B+C=0$
$B-C=0$
$-A=1$
Solving this we get:
$\frac{1}{x\left( x-1 \right)\left( x+1 \right)}=\frac{\left( -1 \right)}{x}+\frac{\left( \frac{1}{2} \right)}{x-1}+\frac{\left( \frac{1}{2} \right)}{x+1}$
$\Rightarrow \frac{1}{x\left( x-1 \right)\left( x+1 \right)}=-\frac{1}{x}+\frac{1}{2}\left( \frac{1}{x-1}+\frac{1}{x+1} \right)$
Rewriting the integral(1):
$y=\int \left( -\frac{1}{x}+\frac{1}{2}\left( \frac{1}{x-1}+\frac{1}{x+1} \right) \right)dx$
\[\Rightarrow y=-\int \frac{1}{x}dx+\frac{1}{2}\int \frac{1}{x-1}dx+\frac{1}{2}\int \frac{1}{x+1}dx\]
\[\Rightarrow y=-\log x+\frac{1}{2}\log \left( x-1 \right)+\frac{1}{2}\log \left( x+1 \right)+\log C\]
\[\Rightarrow y=-\frac{2}{2}\log x+\frac{1}{2}\log \left( x-1 \right)+\frac{1}{2}\log \left( x+1 \right)+\frac{2}{2}\log C\]
\[\Rightarrow y=\frac{1}{2}\left( -\log {{x}^{2}}+\log \left( x-1 \right)+\log \left( x+1 \right)+\log {{C}^{2}} \right)\]
\[\Rightarrow y=\frac{1}{2}\log \left[ \frac{{{C}^{2}}\left( {{x}^{2}}-1 \right)}{{{x}^{2}}} \right]\]
For $y=0$ when $\text{x=2}$.
\[0=\frac{1}{2}\log \left[ \frac{{{C}^{2}}\left( {{2}^{2}}-1 \right)}{{{2}^{2}}} \right]\]
\[\Rightarrow 0=\log \left[ \frac{3{{C}^{2}}}{4} \right]\]
$\Rightarrow \frac{3{{C}^{2}}}{4}=1$
$\Rightarrow {{C}^{2}}=\frac{4}{3}$
Thus the required particular solution is :
$y=\frac{1}{2}\log \left[ \frac{4\left( {{x}^{2}}-1 \right)}{3{{x}^{2}}} \right]$.
13. Find the particular solution of $\text{cos}\left( \frac{\text{dy}}{\text{dx}} \right)\text{=a}\,\,\left( \text{a}\in \text{R} \right)$; $\text{y=1}$ when $\text{x=0}$ to satisfy the given condition.
Ans: The given differential equation is:
$\cos \left( \frac{dy}{dx} \right)=a\,\,\left( a\in R \right)$; $y=1$ when $x=0$
Simplify the expression:
$\cos \left( \frac{dy}{dx} \right)=a\,$
$\Rightarrow \frac{dy}{dx}={{\cos }^{-1}}a$
$\Rightarrow dy={{\cos }^{-1}}adx$
Integrate both side:
$\int dy=\int {{\cos }^{-1}}adx$
$\Rightarrow y={{\cos }^{-1}}a\int dx$
\[\Rightarrow y=x{{\cos }^{-1}}a+C\]
For $y=1$ when $\text{x=0}$.
\[1=0{{\cos }^{-1}}a+C\]
\[\Rightarrow C=1\]
Thus the required particular solution is:
\[y=x{{\cos }^{-1}}a+1\].
\[\Rightarrow \frac{y-1}{x}={{\cos }^{-1}}a\]
\[\Rightarrow \cos \left( \frac{y-1}{x} \right)= a\]
14. Find the particular solution of $\frac{\text{dy}}{\text{dx}}\text{=ytanx}$; $\text{y=1}$ when $\text{x=0}$ to satisfy the given condition.
Ans: The given differential equation is:
$\frac{dy}{dx}=y\tan x$; $y=1$ when $x=0$
Simplify the expression:
$\frac{dy}{dx}=y\tan x$
$\Rightarrow \frac{dy}{y}=\tan xdx$
Integrate both side:
$\int \frac{dy}{y}=\int \tan xdx$
$\Rightarrow \log y=\log \left( \sec x \right)+\log C$
\[\Rightarrow \log y=\log \left( C\sec x \right)\]
$\Rightarrow y=C\sec x$
For $\text{y=1}$ when $\text{x=0}$.
\[1=C\sec 0\]
\[\Rightarrow C=1\]
Thus the required particular solution is :
\[y=\sec x\].
15. Find the equation of a curve passing through the point (0, 0) and whose differential equation is $\text{y }\!\!'\!\!\text{ =}{{\text{e}}^{\text{x}}}\text{sin x}$.
Ans: The given differential equation is:
$y'={{e}^{x}}\sin x$
The curve passes through $\left( 0,0 \right)$.
Simplify the expression:
$\Rightarrow \frac{dy}{dx}={{e}^{x}}\sin x$
$\Rightarrow dy={{e}^{x}}\sin xdx$
Integrate both side:
$\int dy=\int {{e}^{x}}\sin xdx$
Use product rules for integration of RHS. Let:
$I=\int {{e}^{x}}\sin xdx$
$\Rightarrow I=\sin x\int {{e}^{x}}dx-\int \left( \cos x\int {{e}^{x}}dx \right)dx$
$\Rightarrow I={{e}^{x}}\sin x-\int {{e}^{x}}\cos xdx$
$\Rightarrow I={{e}^{x}}\sin x-\left( \cos x\int {{e}^{x}}dx+\int \left( \sin x\int {{e}^{x}}dx \right)dx \right)$
$\Rightarrow I={{e}^{x}}\sin x-{{e}^{x}}\cos x-\int \left( {{e}^{x}}\sin x \right)dx$
$\Rightarrow I={{e}^{x}}\sin x-{{e}^{x}}\cos x-I$
$\Rightarrow I=\frac{{{e}^{x}}}{2}\left( \sin x-\cos x \right)$
Thus integral will be:
$y=\frac{{{e}^{x}}}{2}\left( \sin x-\cos x \right)+C$
Thus as the curve passes through $\left( \text{0,0} \right)$
$0=\frac{{{e}^{0}}}{2}\left( \sin 0-\cos 0 \right)+C$
$\Rightarrow 0=\frac{1}{2}\left( 0-1 \right)+C$
$\Rightarrow C=\frac{1}{2}$
Thus the equation of the curve will be:
$y=\frac{{{e}^{x}}}{2}\left( \sin x-\cos x \right)+\frac{1}{2}$
$\Rightarrow y=\frac{{{e}^{x}}}{2}\left( \sin x-\cos x+1 \right)$
16. For the differential equation $\text{xy}\frac{\text{dy}}{\text{dx}}\text{=}\left( \text{x+2} \right)\left( \text{y+2} \right)$ find the solution curve passing through the point $\left( \text{1,-1} \right)$.
Ans: The given differential equation is:
$xy\frac{dy}{dx}=\left( x+2 \right)\left( y+2 \right)$
The curve passes through $\left( 1,-1 \right)$.
Simplify the expression:
\[\Rightarrow \left( \frac{y}{y+2} \right)dy=\frac{\left( x+2 \right)}{x}dx\]
$\Rightarrow \left( 1-\frac{2}{y+2} \right)dy=\frac{\left( x+2 \right)}{x}dx$
Integrate both side:
$\int \left( 1-\frac{2}{y+2} \right)dy=\int \frac{\left( x+2 \right)}{x}dx$
$\Rightarrow \int dy-2\int \frac{1}{y+2}dy=\int \frac{x}{x}dx+\int \frac{2}{x}dx$
$\Rightarrow y-2\log \left( y+2 \right)=x+2\log x+C$
$\Rightarrow y-x=2\log \left( y+2 \right)+2\log x+C$
$\Rightarrow \Rightarrow y-x=2\log \left[ x\left( y+2 \right) \right]+C$
$\Rightarrow y-x=\log \left[ {{x}^{2}}{{\left( y+2 \right)}^{2}} \right]+C$
Thus as the curve passes through $\left( \text{1,-1} \right)$
$\Rightarrow -1-1=\log \left[ {{\left( 1 \right)}^{2}}{{\left( -1+2 \right)}^{2}} \right]+C$
$\Rightarrow -2=\log 1+C$
$\Rightarrow C=-2$
Thus the equation of the curve will be:
$y-x=\log \left[ {{x}^{2}}{{\left( y+2 \right)}^{2}} \right]-2$
$\Rightarrow y-x+2=\log \left( {{x}^{2}}{{\left( y+2 \right)}^{2}} \right)$
17. Find the equation of a curve passing through the point $\left( \text{0,-2} \right)$ given that at any point $\left( \text{x,y} \right)$ on the curve, the product of the slope of its tangent and $\text{y}$-coordinate of the point is equal to the $\text{x}$ -coordinate of the point.
Ans: According to , the equation is given by:
$y\frac{dy}{dx}=x$
The curve passes through $\left( 0,-2 \right)$.
Simplify the expression:
\[\Rightarrow ydy=xdx\]
Integrate both side:
$\int ydy=\int xdx$
$\Rightarrow \frac{{{y}^{2}}}{2}=\frac{{{x}^{2}}}{2}+C$
$\Rightarrow {{y}^{2}}-{{x}^{2}}=2C$
Thus as the curve passes through $\left( \text{0,-2} \right)$
$\Rightarrow {{\left( -2 \right)}^{2}}-{{0}^{2}}=2C$
$\Rightarrow 4=2C$
$\Rightarrow C=2$
Thus the equation of the curve will be:
${{y}^{2}}-{{x}^{2}}=2\left( 2 \right)$
$\Rightarrow {{y}^{2}}-{{x}^{2}}=4$ .
18. At any point $\left( \text{x,y} \right)$ of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point$\left( \text{-4,-3} \right)$ . Find the equation of the curve given that it passes through $\left( \text{-2,1} \right)$.
Ans: Let the point of contact of the tangent be $\left( \text{x,y} \right)$.Then the slope of the segment joining point of contact and $\left( \text{-4,-3} \right)$:
$m=\frac{y+3}{x+4}$
According to the for the slope of tangent $\frac{\text{dy}}{\text{dx}}$ it follows:
$\frac{dy}{dx}=2m$
$\Rightarrow \frac{dy}{dx}=2\left( \frac{y+3}{x+4} \right)$
Simplify the expression:
$\frac{dy}{dx}=2\left( \frac{y+3}{x+4} \right)$
$\frac{dy}{y+3}=\frac{2}{x+4}dx$
Integrate both side:
$\int \frac{dy}{y+3}=\int \frac{2}{x+4}dx$
$\Rightarrow \log \left( y+3 \right)=2\log \left( x+4 \right)+\log C$
\[\Rightarrow \log \left( y+3 \right)=\log {{\left( x+4 \right)}^{2}}+\log C\]
\[\Rightarrow \log \left( y+3 \right)=\log C{{\left( x+4 \right)}^{2}}\]
\[\Rightarrow y+3=C{{\left( x+4 \right)}^{2}}\]
Thus as the curve passes through $\left( \text{-2,1} \right)$
\[1+3=C{{\left( -2+4 \right)}^{2}}\]
$\Rightarrow 4=4C$
$\Rightarrow C=1$
Thus the equation of the curve will be:
\[y+3={{\left( x+4 \right)}^{2}}\] .
19. The volume of spherical balloons being inflated changes at a constant rate. If initially its radius is $\text{3}$ units and after \[\text{3}\] seconds it is $\text{6}$ units. Find the radius of balloon after $\text{t}$ seconds.
Ans: Let the volume of spherical balloon be $\text{V}$ and its radius $\text{r}$. Let the rate of change of volume be $\text{k}$.
$\frac{dV}{dt}=k$
$\Rightarrow \frac{d}{dt}\left( \frac{4}{3}\pi {{r}^{3}} \right)=k$
$\Rightarrow \frac{4}{3}\pi \frac{d}{dt}\left( {{r}^{3}} \right)=k$
$\Rightarrow \frac{4}{3}\pi \left( 3{{r}^{2}} \right)\frac{dr}{dt}=k$
$\Rightarrow 4\pi {{r}^{2}}\frac{dr}{dt}=k$
$\Rightarrow 4\pi {{r}^{2}}dr=kdt$
Integrate both side:
$\int 4\pi {{r}^{2}}dr=\int kdt$
$\Rightarrow 4\pi \int {{r}^{2}}dr=kt+C$
$\Rightarrow \frac{4}{3}\pi {{r}^{3}}=kt+C$
At initial time, $\text{t=0}$ and $\text{r=3}$:
$\frac{4}{3}\pi {{3}^{3}}=k\left( 0 \right)+C$
$\Rightarrow C=36\pi $
At $\text{t=3}$ the radius $\text{r=6}$:
$\frac{4}{3}\pi \left( {{6}^{3}} \right)=k\left( 3 \right)+36\pi $
$\Rightarrow 3k=288\pi -36\pi $
$\Rightarrow k=84\pi $
Thus the radius-time relation can be given by:
$\frac{4}{3}\pi {{r}^{3}}=84\pi t+36\pi$
$\Rightarrow {{r}^{3}}=63t+27$
$\Rightarrow r={{\left( 63t+27 \right)}^{\frac{1}{3}}}$
The radius of balloon after $\text{t}$ seconds is given by: $r={{\left( 63t+27 \right)}^{\frac{1}{3}}}$ .
20. In a bank, principal increases continuously at the rate of $\text{r}$% per year. Find the value of $\text{r}$ if Rs. $\text{100}$doubles itself in $\text{10}$ years $\left( \text{lo}{{\text{g}}_{\text{e}}}\text{2=0}\text{.6931} \right)$.
Ans: Let the principal be $\text{p}$, according to :
$\frac{dp}{dt}=\left( \frac{r}{100} \right)p$
Simplify the expression:
$\frac{dp}{p}=\left( \frac{r}{100} \right)dt$
Integrate both side:
$\int \frac{dp}{p}=\int \left( \frac{r}{100} \right)dt$
$\Rightarrow \log p=\frac{rt}{100}+c$
\[\Rightarrow p={{e}^{\frac{rt}{100}+c}}\]
\[\Rightarrow p=A{{e}^{\frac{rt}{100}}}\,\,\,\left( A={{e}^{c}} \right)\]
At $\text{t=0}$, $\text{p=100}$:
\[100=A{{e}^{\frac{r\left( 0 \right)}{100}}}\]
$\Rightarrow A=100$
Thus the principle and rate of interest relation:
$p=100{{e}^{\frac{rt}{100}}}$
At $\text{t=10}$, $\text{p=2}\times \text{100=200}$:
\[200=100{{e}^{\frac{r\left( 10 \right)}{100}}}\]
$\Rightarrow 2={{e}^{\frac{r}{10}}}$
Take logarithm on both side:
$\log \left( {{e}^{\frac{r}{10}}} \right)=\log \left( 2 \right)$
$\Rightarrow \frac{r}{10}=0.6931$
$\Rightarrow r=6.931$
Thus the rate of interest $\text{r=6}\text{.931 }\!\!%\!\!\text{ }$.
21. In a bank, principal increases continuously at the rate of $\text{5}$% per year. An amount of Rs $\text{1000}$ is deposited with this bank, how much will it worth after $\text{10}$ years $\left( {{\text{e}}^{\text{0}\text{.5}}}\text{=1}\text{.648} \right)$.
Ans: Let the principal be $\text{p}$, according to principle increases at the rate of $\text{5}$% per year.
$\frac{dp}{dt}=\left( \frac{5}{100} \right)p$
Simplify the expression:
$\frac{dp}{dt}=\frac{p}{20}$
$\Rightarrow \frac{dp}{p}=\frac{1}{20}dt$
Integrate both side:
$\int \frac{dp}{p}=\int \frac{1}{20}dt$
$\Rightarrow \log p=\frac{t}{20}+C$
$\Rightarrow p={{e}^{\frac{t}{20}+C}}$
$\Rightarrow p=A{{e}^{\frac{t}{20}}}\,\,\left( A={{e}^{C}} \right)$
At $\text{t=0}$, $\text{p=1000}$:
$1000=A{{e}^{\frac{0}{20}}}$
$\Rightarrow A=1000$
Thus the relation of principal and time relation:
$\Rightarrow p=1000{{e}^{\frac{t}{20}}}$
At $\text{t=10}$:
$p=1000{{e}^{\frac{10}{20}}}$
$\Rightarrow p=1000{{e}^{0.5}}$
$\Rightarrow p=1000\times 1.648$
$\Rightarrow p=1648$
Thus after $\text{10}$ this year the amount will become Rs. $\text{1648}$.
22. In a culture, the bacteria count is $\text{100000}$ . The number is increased by $\text{10 }\!\!%\!\!\text{ }$ in $\text{2}$ hours. In how many hours will the count reach $\text{200000}$, if the rate of growth of bacteria is proportional to the number present?
Ans: Let the number of bacteria be $\text{y}$ at time $\text{t}$. According to :
$\frac{dy}{dt}\propto y$
$\frac{dy}{dt}=cy$
Here $\text{c}$ is constant.
Simplify the expression:
$\frac{dy}{y}=cdt$
Integrate both side:
$\int \frac{dy}{y}=\int cdt$
$\Rightarrow \log y=ct+D$
$\Rightarrow y={{e}^{ct+D}}$
$\Rightarrow y=A{{e}^{ct}}\,\,\left( A={{e}^{D}} \right)$
At $\text{t=0}$, $\text{y=100000}$:
$100000=A{{e}^{c\left( 0 \right)}}$
$\Rightarrow A=100000$
At $\text{t=2}$, $\text{y=}\frac{11}{10}\left( \text{100000} \right)=110000$:
$y=100000{{e}^{ct}}$
$\Rightarrow 110000=100000{{e}^{c\left( 2 \right)}}$
$\Rightarrow {{e}^{2c}}=\frac{11}{10}$
$\Rightarrow 2c=\log \left( \frac{11}{10} \right)$
$\Rightarrow c=\frac{1}{2}\log \left( \frac{11}{10} \right)$ ……(1)
For $\text{y=200000}$:
$200000=100000{{e}^{ct}}$
$\Rightarrow {{e}^{ct}}=2$
$\Rightarrow ct=\log 2$
$\Rightarrow t=\frac{\log 2}{c}$
Back substituting using expression (1):
\[t=\frac{\log 2}{\frac{1}{2}\log \left( \frac{11}{10} \right)}\]
$\Rightarrow t=\frac{2\log 2}{\log \left( \frac{11}{10} \right)}$
Thus time required for bacteria to reach $\text{200000}$ is \[\text{t=}\frac{\text{log2}}{\frac{\text{1}}{\text{2}}\text{log}\left( \frac{\text{11}}{\text{10}} \right)}\] hrs.
23. Find the general solution of the differential equation $\frac{\text{dy}}{\text{dx}}\text{=}{{\text{e}}^{\text{x+y}}}$.
(A)${{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-y}}}\text{=C}$
(B) ${{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{y}}}\text{=C}$
(C) ${{\text{e}}^{\text{-x}}}\text{+}{{\text{e}}^{\text{y}}}\text{=C}$
(D) ${{\text{e}}^{\text{-x}}}\text{+}{{\text{e}}^{\text{-y}}}\text{=C}$
Ans: The given differential equation is $\frac{\text{dy}}{\text{dx}}\text{=}{{\text{e}}^{\text{x+y}}}$. Simplify the expression:
$\frac{dy}{dx}={{e}^{x}}{{e}^{y}}$
$\Rightarrow \frac{dy}{{{e}^{y}}}={{e}^{x}}dx$
$\Rightarrow {{e}^{-y}}dy={{e}^{x}}dx$
Integrate both side:
$\int {{e}^{-y}}dy=\int {{e}^{x}}dx$
$\Rightarrow -{{e}^{-y}}={{e}^{x}}+D$
$\Rightarrow {{e}^{x}}+{{e}^{-y}}=-D$
$\Rightarrow {{e}^{x}}+{{e}^{-y}}=C\,\,\left( C=-D \right)$
Thus the general solution of given differential equation is $ {{e}^{x}}+{{e}^{-y}}=C$
Thus the correct option is (A).
Conclusion
NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.3 provides a comprehensive approach to solving first-order, first-degree differential equations. With a focus on key methods such as separating variables, these solutions offer clear, step-by-step guidance to help students grasp and apply these techniques effectively. By practising these methods, students can build a solid foundation in differential equations, enhancing their understanding and performance in exams.
Class 12 Maths Chapter 9: Exercises Breakdown
S.No. | Chapter 9 - Differential Equations Exercises in PDF Format | |
1 | Class 12 Maths Chapter 9 Exercise 9.1 - 12 Questions & Solutions (10 Short Answers, 2 MCQs) | |
2 | Class 12 Maths Chapter 9 Exercise 9.2 - 12 Questions & Solutions (10 Short Answers, 2 MCQs) | |
3 | Class 12 Maths Chapter 9 Exercise 9.4 - 23 Questions & Solutions (10 Short Answers, 12 Long Answers, 1 MCQs) | |
4 | Class 12 Maths Chapter 9 Exercise 9.5 - 17 Questions & Solutions (15 Short Answers, 2 MCQs) |
CBSE Class 12 Maths Chapter 9 Other Study Materials
S.No. | Important Links for Chapter 9 Differential Equations |
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.3
1. What is the focus of Exercise 9.3 in Chapter 9 of Class 12 Maths?
Exercise 9.3 focuses on methods for solving first-order, first-degree differential equations.
2. What methods are covered in this exercise?
The exercise covers key methods, including solving differential equations with variables separable.
3. How can NCERT Solutions help with this exercise?
The solutions provide clear, step-by-step explanations for each method, making it easier to understand and apply the techniques.
4. Where can I download the FREE PDF of these solutions?
The FREE PDF can be downloaded from educational websites like Vedantu.
5. What kind of problems are included in Exercise 9.3?
The exercise includes problems that involve applying different methods to solve first-order, first-degree differential equations.
6. How do these solutions assist with exam preparation?
They offer detailed solutions and practice problems, helping you master the methods and improve your performance in exams.
7. Are these solutions useful for self-study?
Yes, they are designed to be clear and easy to follow, making them ideal for self-study.
8. Can these solutions help with understanding complex differential equations?
By mastering the methods covered, you will be better prepared to tackle more complex differential equations.
9. How often should I use these solutions for studying?
Regular practice with these solutions is recommended to reinforce your understanding and improve problem-solving skills.
10. Can I access the solutions on my mobile device?
Yes, the FREE PDF can be downloaded and viewed on any device, including smartphones and tablets.