Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.5

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.5 - FREE PDF Download

Explore the NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.5.  This exercise helps students learn the methods needed to solve these types of equations, making it easier to understand and apply the concepts. The solutions are explained in simple steps, helping students practice and prepare for their exams with confidence. This chapter is essential for mastering key concepts and preparing for exams, ensuring a solid grasp of differential equations as outlined in the CBSE Class 12 Maths syllabus.

toc-symbol
Table of Content
1. NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.5 - FREE PDF Download
2. Glance on NCERT Solutions Maths Chapter 9 Exercise 9.5 Class 12 | Vedantu
3. Access NCERT Solutions for Maths Class 12 Chapter 9 - Differential Equations
    3.1Exercise 9.5
4. Conclusion
5. Class 12 Maths Chapter 9: Exercises Breakdown
6. CBSE Class 12 Maths Chapter 9 Other Study Materials
7. NCERT Solutions for Class 12 Maths | Chapter-wise List
8. Related Links for NCERT Class 12 Maths in Hindi
9. Important Related Links for NCERT Class 12 Maths
FAQs


Glance on NCERT Solutions Maths Chapter 9 Exercise 9.5 Class 12 | Vedantu

  • With Exercise 9.5 of Class 12 Maths Chapter 9, learn how to solve linear differential equations with step-by-step methods.

  • The solutions involve using integrating factors to simplify and solve the equations effectively.

  • Vedantu provides clear, detailed explanations for each method, aiding in better understanding.

  • This exercise includes 19 Long and Short Answers problems including 1 MCQ to practice these techniques thoroughly. There are detailed solutions provided by experts at Vedantu to guide you through each step.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 12 Chapter 9 - Differential Equations

Exercise 9.5

1. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 2y = \sin x\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 2\] and \[Q = \sin x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {2dx} }}\]

\[I.F. = {e^{2x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{2x}} = \int {\sin x.{e^{2x}}dx}  + C.......\left( 1 \right)\]

Let \[I = \int {\sin x.{e^{2x}}dx} \]

Using integration by parts,

\[I = \sin x\int {{e^{2x}}dx}  - \int {\left( {\dfrac{{d\left( {\sin x} \right)}}{{dx}}.\int {{e^{2x}}dx} } \right)} dx\]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \int {\cos x.\dfrac{{{e^{2x}}}}{2}dx} \]

Again using integration by parts,

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \cos x\int {\dfrac{{{e^{2x}}}}{2}dx}  + \int {\left( {\dfrac{{d\left( {\cos x} \right)}}{{dx}}.\int {\dfrac{{{e^{2x}}}}{2}dx} } \right)} dx\]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} + \int {\left( { - \sin x} \right).\dfrac{{{e^{2x}}}}{4}dx} \]

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} - \dfrac{1}{4}\int {\sin x.{e^{2x}}dx} \]

As \[I = \int {\sin x.{e^{2x}}dx} \],

Therefore,

\[I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4} - \dfrac{1}{4}I\]

\[I + \dfrac{1}{4}I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4}\]

\[\dfrac{5}{4}I = \dfrac{{{e^{2x}}\sin x}}{2} - \dfrac{{{e^{2x}}\cos x}}{4}\]

\[I = \dfrac{{{e^{2x}}}}{5}\left( {2\sin x - \cos x} \right)\]

Substituting this value of I in equation 1.

\[y{e^{2x}} = \dfrac{{{e^{2x}}}}{5}\left( {2\sin x - \cos x} \right) + C\]

\[y = \dfrac{1}{5}\left( {2\sin x - \cos x} \right) + C{e^{ - 2x}}\]

This required differential equation .


2. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 3y = {e^{ - 2x}}\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 3\] and \[Q = {e^{ - 2x}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {3dx} }}\]

\[I.F. = {e^{3x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{3x}} = \int {\left( {{e^{3x}} \times {e^{ - 2x}}} \right)dx}  + C\]

\[y{e^{3x}} = \int {{e^x}dx}  + C\]

\[y{e^{3x}} = {e^x} + C\]

\[y = {e^{ - 2x}} + C{e^x}\]

This required differential equation.


3. Solve the differential equation \[\dfrac{{dy}}{{dx}} + \dfrac{y}{x} = {x^2}\].

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{x}\] and \[Q = {x^2}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{1}{x}dx} }}\]

\[I.F. = {e^{\log x}}\]

\[I.F. = x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[yx = \int {\left( {{x^2}.x} \right)dx}  + C\]

\[yx = \int {\left( {{x^3}} \right)dx}  + C\]

\[yx = \dfrac{{{x^4}}}{4} + C\]

This required differential equation.


4. Solve the differential equation \[\dfrac{{dy}}{{dx}} + \left( {\sec x} \right)y = \tan x{\text{ }}\left( {0 \leqslant x \leqslant \dfrac{\pi }{2}} \right)\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \sec x\] and \[Q = \tan x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\sec xdx} }}\]

\[I.F. = {e^{\log \left( {\sec x + \tan x} \right)}}\]

\[I.F. = \sec x + \tan x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \int {\tan x\left( {\sec x + \tan x} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \int {\sec x\tan xdx}  + \int {{{\tan }^2}xdx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \sec x + \int {\left( {{{\sec }^2}x - 1} \right)dx}  + C\]

\[y\left( {\sec x + \tan x} \right) = \sec x + \tan x - x + C\]

This required differential equation.


5. Solve the differential equation \[{\cos ^2}x\dfrac{{dy}}{{dx}} + y = \tan x{\text{ }}\left( {0 \leqslant x\dfrac{\pi }{2}} \right)\]

Ans: On rearranging the given equation,

\[\dfrac{{dy}}{{dx}} + {\sec ^2}x.y = {\sec ^2}x\tan x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = {\sec ^2}x\] and \[Q = {\sec ^2}x\tan x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {{{\sec }^2}xdx} }}\]

\[I.F. = {e^{\tan x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{e^{\tan x}} = \int {\tan x{{\sec }^2}x{e^{\tan x}}dx + C} \]

Put \[\tan x = t\]

Differentiating w.r.t. \[t\].

\[{\sec ^2}xdx = dt\]

Therefore, above equation become,

\[y{e^{\tan x}} = \int {t{e^t}dt + C} \]

Using integration by parts,

\[y{e^{\tan x}} = t{e^t} - \int {{e^t}dt + C} \]

\[y{e^{\tan x}} = t{e^t} - {e^t} + C\]

Substituting the value of \[t\] .

\[y{e^{\tan x}} = \tan x{e^{\tan x}} - {e^{\tan x}} + C\]

\[y = \tan x - 1 + C{e^{ - \tan x}}\]

This is required differential equation.


6. Solve the differential equation \[x\dfrac{{dy}}{{dx}} + 2y = {x^2}\log x\]

Ans: On rearranging given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{2}{x}y = x\log x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{2}{x}\] and \[Q = x\log x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{2}{x}dx} }}\]

\[I.F. = {e^{\log {x^2}}}\]

\[I.F. = {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{x^2} = \int {x\log x.{x^2}dx}  + C\]

\[y{x^2} = \int {{x^3}\log xdx}  + C\]

Using integration by parts,

\[y{x^2} = \log x\int {{x^3}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {\log x} \right)\int {{x^3}dx} } \right)dx}  + C\]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \int {\left( {\dfrac{1}{x}.\dfrac{{{x^4}}}{4}} \right)dx + C} \]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \dfrac{1}{4}.\dfrac{{{x^4}}}{4} + C\]

\[y{x^2} = \dfrac{{{x^4}\log x}}{4} - \dfrac{{{x^4}}}{{16}} + C\]

\[y = \dfrac{{{x^2}\log x}}{4} - \dfrac{{{x^2}}}{{16}} + C{x^{ - 2}}\]

\[y = \dfrac{{{x^2}}}{{16}}\left( {4\log x - 1} \right) + C{x^{ - 2}}\]

This is required differential equation.


7. Solve the differential equation \[x\log x\dfrac{{dy}}{{dx}} + y = \dfrac{2}{x}\log x\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{y}{{\log x}} = \dfrac{2}{{{x^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{{x\log x}}\] and \[Q = \dfrac{2}{{{x^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[\]

\[I.F. = {e^{\log \left( {\log x} \right)}}\]

\[I.F. = \log x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\log x = \int {\left( {\dfrac{2}{{{x^2}}}\log x} \right)dx}  + C\]

Using integration by parts,

\[y\log x = 2\left[ {\log x\int {\dfrac{1}{{{x^2}}}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {\log x} \right)\int {\dfrac{1}{{{x^2}}}dx} } \right)dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) - \int {\left( {\dfrac{1}{x}\left( { - \dfrac{1}{x}} \right)} \right)dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) + \int {\dfrac{1}{{{x^2}}}dx} } \right] + C\]

\[y\log x = 2\left[ {\log x\left( { - \dfrac{1}{x}} \right) - \dfrac{1}{x}} \right] + C\]

\[y\log x =  - \dfrac{2}{x}\left( {1 + \log x} \right) + C\]

This is required differential equation.


8. Solve the differential equation \[\left( {1 + {x^2}} \right)dy + 2xydx = \cot xdx\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{{2xy}}{{1 + {x^2}}} = \dfrac{{\cot x}}{{1 + {x^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{{2x}}{{1 + {x^2}}}\] and \[Q = \dfrac{{\cot x}}{{1 + {x^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{{2x}}{{1 + {x^2}}}dx} }}\]

\[I.F. = {e^{\log \left( {1 + {x^2}} \right)}}\]

\[I.F. = 1 + {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\dfrac{{\cot x}}{{1 + {x^2}}} \times \left( {1 + {x^2}} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\cot xdx}  + C\]

\[y\left( {1 + {x^2}} \right) = \log \left( {\sin x} \right) + C\]

This is required differential equation.


9. Solve the differential equation \[x\dfrac{{dy}}{{dx}} + y - x + xy\cot x = 0\]

Ans: On rearranging given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{x} + \cot x} \right)y = 1\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{1}{x} + \cot x\] and \[Q = 1\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\left( {\dfrac{1}{x} + \cot x} \right)dx} }}\]

\[I.F. = {e^{\log x + \log \sin x}}\]

\[I.F. = x\sin x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[yx\sin x = \int {\left( {1.x\sin x} \right)dx}  + C\]

\[yx\sin x = x\int {\sin xdx - \int {\left( {\dfrac{d}{{dx}}\left( x \right)\int {\sin xdx} } \right)dx} }  + C\]

\[yx\sin x = x\left( { - \cos x} \right) - \int {\left( { - \cos x} \right)dx}  + C\]

\[yx\sin x =  - x\cos x + \sin x + C\]

\[y = \dfrac{{ - x\cos x}}{{x\sin x}} + \dfrac{{\sin x}}{{x\sin x}} + \dfrac{C}{{x\sin x}}\]

\[y =  - \cot x + \dfrac{1}{x} + \dfrac{C}{{x\sin x}}\]

This is required differential equation.


10. Solve the differential equation \[\left( {x + y} \right)\dfrac{{dy}}{{dx}} = 1\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} - x = y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = y\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dy} }}\]

\[I.F. = {e^{ - y}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[x{e^{ - y}} = \int {\left( {y{e^{ - y}}} \right)dy}  + C\]

\[x{e^{ - y}} = y\int {{e^{ - y}}dy}  - \int {\left( {\dfrac{d}{{dy}}\left( y \right)\int {{e^{ - y}}dy} } \right)dy}  + C\]

\[x{e^{ - y}} =  - y{e^{ - y}} - \int {\left( { - {e^{ - y}}} \right)dy}  + C\]

\[x{e^{ - y}} =  - y{e^{ - y}} - {e^{ - y}} + C\]

\[x =  - y - 1 + C{e^y}\]

\[x + y + 1 = C{e^y}\]

This is required differential equation.


11. Solve the differential equation \[ydx + \left( {x - {y^2}} \right)dy = 0\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} + \dfrac{x}{y} = y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P = \dfrac{1}{y}\] and \[Q = y\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\dfrac{1}{y}dy} }}\]

\[I.F. = {e^{\log y}}\]

\[I.F. = y\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[xy = \int {\left( {y.y} \right)dy}  + C\]

\[xy = \int {{y^2}dy}  + C\]

\[xy = \dfrac{{{y^3}}}{3} + C\]

This is required differential equation.


12. Solve the differential equation \[\left( {x + 3{y^2}} \right)\dfrac{{dy}}{{dx}} = y{\text{ }}\left( {y > 0} \right)\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} - \dfrac{x}{y} = 3y\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - \dfrac{1}{y}\] and \[Q = 3y\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\left( { - \dfrac{1}{y}} \right)dy} }}\]

\[I.F. = {e^{\log \left( {\dfrac{1}{y}} \right)}}\]

\[I.F. = \dfrac{1}{y}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[x\left( {\dfrac{1}{y}} \right) = \int {\left( {3y \times \dfrac{1}{y}} \right)dy}  + C\]

\[\dfrac{x}{y} = \int {3dy}  + C\]

\[\dfrac{x}{y} = 3y + C\]

\[x = 3{y^2} + Cy\]

This is required differential equation.


13. Solve the differential equation \[\dfrac{{dy}}{{dx}} + 2y\tan x = \sin x;{\text{   }}y = 0{\text{ when }}x = \dfrac{\pi }{3}\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = 2\tan x\] and \[Q = \sin x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {2\tan xdx} }}\]

\[I.F. = {e^{\log \left( {{{\sec }^2}x} \right)}}\]

\[I.F. = {\sec ^2}x\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y{\sec ^2}x = \int {\left( {\sin x.{{\sec }^2}x} \right)dx}  + C\]

\[y{\sec ^2}x = \int {\left( {\sec x\tan x} \right)dx}  + C\]

\[y{\sec ^2}x = \sec x + C......\left( 1 \right)\]

Now, \[y = 0{\text{ when }}x = \dfrac{\pi }{3}\]

\[0 \times {\sec ^2}\left( {\dfrac{\pi }{3}} \right) = \sec \left( {\dfrac{\pi }{3}} \right) + C\]

\[C =  - 2\]

Substituting the value of \[C =  - 2\]in equation \[\left( 1 \right)\].

\[y{\sec ^2}x = \sec x - 2\]

\[y = \cos x - 2{\sec ^2}x\]

This is required differential equation.


14. Solve the differential equation \[\left( {1 + {x^2}} \right)\dfrac{{dy}}{{dx}} + 2xy = \dfrac{1}{{1 + {x^2}}}{\text{   }}y = 0{\text{ when }}x = 1\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} + \dfrac{{2xy}}{{1 + {x^2}}} = \dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P = \dfrac{{2x}}{{1 + {x^2}}}\] and \[Q = \dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int {\dfrac{{2x}}{{1 + {x^2}}}dx} }}\]

\[I.F. = {e^{\log \left( {1 + {x^2}} \right)}}\]

\[I.F. = 1 + {x^2}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\left( {\dfrac{1}{{{{\left( {1 + {x^2}} \right)}^2}}}.\left( {1 + {x^2}} \right)} \right)dx}  + C\]

\[y\left( {1 + {x^2}} \right) = \int {\dfrac{1}{{1 + {x^2}}}dx}  + C\]

\[y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x + C......\left( 1 \right)\]

Now, \[y = 0{\text{ when }}x = 1\]

\[0 = {\tan ^{ - 1}}1 + C\]

\[C =  - \dfrac{\pi }{4}\]

Substituting the value of \[C =  - \dfrac{\pi }{4}\] in equation\[\left( 1 \right)\],

\[y\left( {1 + {x^2}} \right) = {\tan ^{ - 1}}x - \dfrac{\pi }{4}\]

This is required differential equation.


15. Solve the differential equation \[\dfrac{{dy}}{{dx}} - 3y\cot x = \sin 2x{\text{        }}y = 2{\text{ when }}x = \dfrac{\pi }{2}\]

Ans: The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P =  - 3\cot x\] and \[Q = \sin 2x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int { - 3\cot xdx} }}\]

\[I.F. = {e^{ - 3\log \left( {\sin x} \right)}}\]

\[I.F. = \dfrac{1}{{{{\sin }^3}x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[y\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dx}  + C\]

\[y.\dfrac{1}{{{{\sin }^3}x}} = \int {\left( {\sin 2x.\dfrac{1}{{{{\sin }^3}x}}} \right)dx}  + C\]

\[y.\cos e{c^3}x = 2\int {\left( {\cot x\cos ecx} \right)dx}  + C\]

\[y.\cos e{c^3}x =  - 2\cos ecx + C\]

\[y =  - \dfrac{2}{{\cos e{c^2}x}} + \dfrac{C}{{\cos e{c^3}x}}\]

\[y =  - 2{\sin ^2}x + C{\sin ^3}x......\left( 1 \right)\]

Now, \[y = 2{\text{ when }}x = \dfrac{\pi }{2}\]

\[2 =  - 2{\sin ^2}\left( {\dfrac{\pi }{2}} \right) + C{\sin ^3}\left( {\dfrac{\pi }{2}} \right)\]

\[2 =  - 2 + C\]

\[C = 4\]

Substituting the value of \[C = 4\]in equation 1,

\[y =  - 2{\sin ^2}x + 4{\sin ^3}x\]

\[y = 4{\sin ^3}x - 2{\sin ^2}x\]

This is required differential equation.


16. Find the equation of a curve passing through the origin given that the slope of thetangent to the curve at any point \[(x,y)\] is equal to the sum of the coordinates ofthe point.

Ans: Let \[f\left( {x,y} \right)\] be the curve passing through the origin.

At point \[(x,y)\], the slope of curve will be \[\dfrac{{dy}}{{dx}}\] .

According to the question,

\[\dfrac{{dy}}{{dx}} - y = x\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = x\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dx} }}\]

\[I.F. = {e^{ - x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[y{e^{ - x}} = \int {\left( {x{e^{ - x}}} \right)dx}  + C\]

\[y{e^{ - x}} = x\int {{e^{ - x}}dy}  - \int {\left( {\dfrac{d}{{dx}}\left( x \right)\int {{e^{ - x}}dx} } \right)dx}  + C\]

\[y{e^{ - x}} =  - x{e^{ - x}} - \int {\left( { - {e^{ - x}}} \right)dx}  + C\]

\[y{e^{ - x}} =  - x{e^{ - x}} - {e^{ - x}} + C\]

\[y =  - x - 1 + C{e^x}\]

\[x + y + 1 = C{e^x}......\left( 1 \right)\]

As, equation is passing through the origin.

Therefore,

\[0 + 0 + 1 = C{e^0}\]

\[1 = C\]

Substituting the value of \[1 = C\] in equation 1.

\[x + y + 1 = {e^x}\]

This is required differential equation of curve passing through origin.


17. Find the equation of a curve passing through the point \[\left( {0,2} \right)\] given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope ofthe tangent to the curve at that point by 5.

Ans: Let \[f\left( {x,y} \right)\] be the curve passing through the origin.

At point \[(x,y)\], the slope of curve will be \[\dfrac{{dy}}{{dx}}\] .

According to the question,

\[\dfrac{{dy}}{{dx}} + 5 = x + y\]

\[\dfrac{{dy}}{{dx}} - y = x - 5\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P =  - 1\] and \[Q = x - 5\]

Calculating integration factor,

\[I.F. = {e^{\int { - 1dx} }}\]

\[I.F. = {e^{ - x}}\]

Therefore, solution of the given differential equation is given by the relation,

\[x\left( {I.F.} \right) = \int {\left( {Q \times I.F.} \right)dy}  + C\]

\[y{e^{ - x}} = \int {\left( {x - 5} \right){e^{ - x}}dx}  + C\]

\[y{e^{ - x}} = \left( {x - 5} \right)\int {{e^{ - x}}dx}  - \int {\left( {\dfrac{d}{{dx}}\left( {x - 5} \right)\int {{e^{ - x}}dx} } \right)} dx + C\]

\[y{e^{ - x}} = \left( {5 - x} \right){e^{ - x}} + \int {{e^{ - x}}dx}  + C\]

\[y{e^{ - x}} = \left( {5 - x} \right){e^{ - x}} - {e^{ - x}} + C\]

\[y{e^{ - x}} = \left( {4 - x} \right){e^{ - x}} + C\]

\[y = 4 - x + C{e^x}\]

\[y + x - 4 = C{e^x}......\left( 1 \right)\]

As equation is passing through \[\left( {0,2} \right)\] .

Therefore,

\[0 + 2 - 4 = C{e^0}\]

\[ - 2 = C\]

Substituting the value of \[ - 2 = C\] in equation 1.

\[y + x - 4 =  - 2{e^x}\]

This the required equation of curve passing through \[\left( {0,2} \right)\] .


18. The Integrating Factor of the differential equation \[x\dfrac{{dy}}{{dx}} - y = 2{x^2}\] is 

\[\left( A \right){e^{ - x}}\]

\[\left( B \right){e^{ - y}}\]

\[\left( C \right)\dfrac{1}{x}\]

\[\left( D \right)x\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dy}}{{dx}} - \dfrac{y}{x} = 2x\]

The given equation is in the form of \[\dfrac{{dy}}{{dx}} + Py = Q\]

Where, \[P =  - \dfrac{1}{x}\] and \[Q = 2x\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdx} }}\]

\[I.F. = {e^{\int { - \dfrac{1}{x}dx} }}\]

\[I.F. = {e^{ - \log x}}\]

\[I.F. = {e^{\log \dfrac{1}{x}}}\]

\[I.F. = \dfrac{1}{x}\]

Therefore, the correct option is \[\left( C \right)\] .


18. The Integrating Factor of the differential equation \[\left( {1 - {y^2}} \right)\dfrac{{dx}}{{dy}} + yx = ay\left( { - 1 < y < 1} \right)\] is

\[\left( A \right)\dfrac{1}{{{y^2} - 1}}\]

\[\left( B \right)\dfrac{1}{{\sqrt {{y^2} - 1} }}\]

\[\left( C \right)\dfrac{1}{{1 - {y^2}}}\]

\[\left( D \right)\dfrac{1}{{\sqrt {1 - {y^2}} }}\]

Ans: On rearranging the given equation can be written as,

\[\dfrac{{dx}}{{dy}} + \dfrac{{xy}}{{1 - {y^2}}} = \dfrac{{ay}}{{1 - {y^2}}}\]

The given equation is in the form of \[\dfrac{{dx}}{{dy}} + Px = Q\]

Where, \[P = \dfrac{y}{{1 - {y^2}}}\] and \[Q = \dfrac{{ay}}{{1 - {y^2}}}\]

Calculating integration factor,

\[I.F. = {e^{\int {Pdy} }}\]

\[I.F. = {e^{\int {\dfrac{y}{{1 - {y^2}}}dy} }}\]

\[\]\[I.F. = {e^{\log \left( {\dfrac{1}{{\sqrt {1 - {y^2}} }}} \right)}}\]

\[I.F. = \dfrac{1}{{\sqrt {1 - {y^2}} }}\]

Therefore, the correct option is \[\left( D \right)\]


Conclusion

NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.5 offers a thorough approach to solving linear differential equations. The detailed, step-by-step solutions provided help clarify complex concepts and methods, such as using integrating factors. These solutions are designed to enhance understanding and problem-solving skills, making them a valuable resource for effective exam preparation. Download the FREE PDF to strengthen your grasp of linear differential equations and boost your confidence for upcoming exams.


Class 12 Maths Chapter 9: Exercises Breakdown

S.No.

Chapter 9 - Differential Equations Exercises in PDF Format

1

Class 12 Maths Chapter 9 Exercise 9.1 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

2

Class 12 Maths Chapter 9 Exercise 9.2 - 12 Questions & Solutions (10 Short Answers, 2 MCQs)

3

Class 12 Maths Chapter 9 Exercise 9.3 - 12 Questions & Solutions (5 Short Answers, 5 Long Answers, 2 MCQs)

4

Class 12 Maths Chapter 9 Exercise 9.4 - 23 Questions & Solutions (10 Short Answers, 12 Long Answers, 1 MCQs)



CBSE Class 12 Maths Chapter 9 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations Exercise 9.5

1. What is the focus of Exercise 9.5 in Chapter 9 of Class 12 Maths?

Exercise 9.5 focuses on solving linear differential equations using integrating factors.

2. How can NCERT Solutions for Exercise 9.5 help me?

The solutions provide clear, step-by-step guidance on solving linear differential equations, making complex problems easier to understand.

3. Where can I download the FREE PDF of Class 12 Maths Exercise 9.5 solutions?

The FREE PDF can be downloaded from educational websites like Vedantu.

4. What types of problems are included in Exercise 9.5?

The exercise includes various problems that involve applying methods to solve linear differential equations.

5. How do Class 12 Maths Exercise 9.5 solutions assist with exam preparation?

They offer detailed solutions and practice problems that help you master linear differential equations and prepare effectively for exams.

6. Are Class 12 Maths Exercise 9.5 solutions suitable for self-study?

Yes, the solutions are designed to be clear and easy to follow, making them ideal for self-study.

7. Can Class 12 Maths Exercise 9.5 solutions help with understanding complex differential equations?

Yes, by learning the methods for solving linear differential equations, you'll be better equipped to handle more complex problems.

8. How often should I use Class 12 Maths Exercise 9.5 solutions for studying?

Regular practice with these solutions is recommended to reinforce your understanding and improve problem-solving skills.

9. What should I do if I find a problem challenging?

Review the step-by-step solutions provided or seek additional help from teachers or online resources if needed.

10. Can I access the Class 12 Maths Exercise 9.5 solutions on my mobile device?

Yes, the FREE PDF can be downloaded and viewed on any device, including smartphones and tablets.