NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers In Hindi PDF Download
Download the Class 7 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 7, you have reached the right platform. The NCERT Solutions for Class 7 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 7 Maths in English and Hindi from our website at absolutely free of cost.
NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
Class: | |
Subject: | |
Chapter Name: | Chapter 13 - Exponents And Powers |
Content-Type: | Text, Videos, Images and PDF Format |
Academic Year: | 2024-25 |
Medium: | English and Hindi |
Available Materials: |
|
Other Materials |
|
NCERT Solution for Class 7 Maths Chapter 13- घातांक और घात
प्रश्नावली 13.1
1. निम्नलिखित के मान ज्ञात कीजिए:
\[{{\mathbf{2}}^{\mathbf{6}}}\]
उत्तर: \[2^{6}2^{6}=2\times 2\times 2\times 2\times 2\times 2=64\]
\[{{\mathbf{9}}^{\mathbf{3}}}\]
उत्तर: \[{{9}^{3}}=9\times 9\times 9=729\]
\[\mathbf{1}{{\mathbf{1}}^{\mathbf{2}}}\]
उत्तर: \[{{11}^{2}}=11\times 11=121\]
\[{{\mathbf{5}}^{\mathbf{4}}}\]
उत्तर: \[{{5}^{4}}=5\times 5\times 5\times 5=625\]
2. निम्नलिखित को घातांकीय रूप में व्यक्त कीजिए:
\[\mathbf{6}\times \mathbf{6}\times \mathbf{6}\times \mathbf{6}\]
\[\mathbf{t}\times \mathbf{t}\]
\[\mathbf{b}\times \mathbf{b}\times \mathbf{b}\times \mathbf{b}\]
\[\mathbf{5}\times \mathbf{5}\times \mathbf{7}\times \mathbf{7}\times \mathbf{7}\]
\[\mathbf{2}\times \mathbf{2}\times \mathbf{a}\times \mathbf{a}\]
\[\mathbf{a}\times \mathbf{a}\times \mathbf{a}\times \mathbf{c}\times \mathbf{c}\times \mathbf{c}\times \mathbf{c}\times \mathbf{d}\]
उत्तर:
\[\begin{align} & \left( i \right)~{{6}^{4}} \\ & \left( ii \right)~{{t}^{2}} \\ & \left( iii \right)~{{b}^{4}} \\ & \left( iv \right)~{{5}^{2}}\times {{7}^{3}} \\ & \left( v \right)~{{2}^{2}}\times {{a}^{2}} \\ \end{align}\]
3. निम्नलिखित संख्याओं में से प्रत्येक को घातांकीय संकेतन में व्यक्त कीजिए:
512
उत्तर: \[512=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2={{2}^{9}}\]
\[\mathbf{343}\]
उत्तर: \[343=7\times 7\times 7={{7}^{3}}\]
\[\left( \mathbf{c} \right)\text{ }\mathbf{729}\]
उत्तर: \[729=3\times 3\times 3\times 3\times 3\times 3={{3}^{6}}\]
\[\left( \mathbf{d} \right)\text{ }\mathbf{3125}\]
उत्तर: \[3125=5\times 5\times 5\times 5\times 5={{5}^{5}}\]
4. निम्नलिखित में से प्रत्येक भाग में, जहाँ भी सम्भव हो, बड़ी संख्या को पहचानिए:
\[{{\mathbf{4}}^{\mathbf{3}}}~\]या \[{{\mathbf{3}}^{\mathbf{4}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{4}^{3}}=4\times 4\times 4=64 \\ {{3}^{4}}=3\times 3\times 3\times 3=81 \\ {{3}^{4}}>~{{4}^{3}} \\ \end{array}\]
\[{{\mathbf{5}}^{\mathbf{3}}}~\]या \[{{\mathbf{3}}^{\mathbf{5}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{5}^{3}}=5\times 5\times 5=125 \\ {{3}^{5}}=3\times 3\times 3\times 3\times 3=243 \\ {{3}^{5}}>{{5}^{3}} \\ \end{array}\]
\[{{\mathbf{2}}^{\mathbf{8}}}~\]या \[{{\mathbf{8}}^{\mathbf{2}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{2}^{8}}=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2=256 \\ {{8}^{2}}=8\times 8=64 \\ {{2}^{8}}>{{8}^{2}} \\ \end{array}\]
$\mathbf{100^{2}}$ या $\mathbf{2^{100}}$
उत्तर:
\[\begin{array}{*{35}{l}} {{100}^{2}}={{\left( 2\times 2\times 5\times 5 \right)}^{2}} \\ =\left( {{2}^{2}}\times {{5}^{2}} \right)2 \\ ={{2}^{4}}\times {{5}^{4}} \\ \end{array}\]
इस गुणनखंड में \[5\text{ }>\text{ }4\]और \[4={{2}^{2}}\]
यदि यहाँ पर \[5\] के स्थान पर \[8\] भी होता तो \[8={{2}^{3}}\]`
\[5\]के स्थान पर \[8\] होने की स्थिति में गुणनखंड इस प्रकार होता:
\[{{2}^{4}}\times {{2}^{3}}={{2}^{7}}~\] जो हर हाल में \[{{2}^{100}}\] से छोटा होता।
इसलिए, \[{{2}^{100}}>{{100}^{2}}\]
\[{{\mathbf{2}}^{\mathbf{10}}}~\]या \[\mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{2}^{10}}={{4}^{5}}=4\times 4\times 4\times 4\times 4=1024 \\ {{10}^{2}}=100 \\ {{2}^{10}}>{{10}^{2}} \\ \end{array}\]
5. निम्नलिखित में से प्रत्येक को उनके अभाज्य गुणनखंडों की घातो के गुणनफल के रूप में व्यक्त कीजिए।
648
उत्तर:
\[\begin{array}{*{35}{l}} 648=2\times 2\times 2\times 3\times 3\times 3\times 3 \\ ={{2}^{3}}\times {{3}^{4}} \\ \end{array}\]
\[\mathbf{405}\]
उत्तर:
\[\begin{align} & 405 \\ & =5\times 3\times 3\times 3\times 3 \\ & =5\times {{3}^{4}} \\ \end{align}\]
\[\mathbf{540}\]
उत्तर:
\[\begin{align} & 540=2\times 2\times 3\times 3\times 3\times 5 \\ & ={{2}^{2}}\times {{3}^{3}}\times 5 \\ \end{align}\]
\[\mathbf{3600}\]
उत्तर:
\[\begin{array}{*{35}{l}} 3600=36\times 100 \\ =4\times 9\times 4\times 25 \\ =4\times 4\times 9\times 5\times 5 \\ ={{2}^{4}}\times {{3}^{2}}\times {{5}^{2}} \\ \end{array}\]
6.सरल कीजिए:
\[\left( \mathbf{a} \right)\text{ }\mathbf{2}\text{ }\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}\]
उत्तर: \[2\times {{10}^{3}}=2\times 1000=2000\]
\[{{\mathbf{7}}^{\mathbf{2}}}~\times \text{ }{{\mathbf{2}}^{\mathbf{2}}}\]
उत्तर: \[{{7}^{2}}\times {{2}^{2}}=49\times 4=196\]
\[{{\mathbf{2}}^{\mathbf{3}}}~\times \text{ }\mathbf{5}\]
उत्तर: \[{{2}^{3}}\times 5=8\times 5=40\]
\[\mathbf{3}\text{ }\times \text{ }{{\mathbf{4}}^{\mathbf{4}}}\]
उत्तर: \[3\times {{4}^{4}}=3\times 256=768\]
\[\mathbf{0}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}\]
उत्तर: \[0\times 102=0\]
\[{{\mathbf{5}}^{\mathbf{2}}}~\times \text{ }{{\mathbf{3}}^{\mathbf{3}}}\]
उत्तर: \[{{5}^{2}}\times {{3}^{3}}=25\times 27=675\]
\[{{\mathbf{2}}^{\mathbf{4}~}}\times \text{ }{{\mathbf{3}}^{\mathbf{2}}}\]
उत्तर: \[{{2}^{4}}\times {{3}^{2}}=16\times 9=144\]
\[{{\mathbf{3}}^{\mathbf{2}}}~\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}\]
उत्तर: \[{{3}^{2}}\times {{10}^{4}}=9\times 10000=90000\]
7. सरल कीजिए:
(a) \[{{\left( -\mathbf{4} \right)}^{\mathbf{3}}}\]
उत्तर: \[{{\left( -4 \right)}^{3}}=-64\]
\[\left( \mathbf{b} \right)\text{ }\left( -\mathbf{3} \right)\text{ }\times \text{ }{{\left( -\mathbf{2} \right)}^{\mathbf{3}}}\]
उत्तर: \[\left( -3 \right)\times {{\left( -2 \right)}^{3}}=\left( -3 \right)\times \left( -8 \right)=24\]
\[\left( \mathbf{c} \right)\text{ }{{\left( -\mathbf{3} \right)}^{\mathbf{2}}}~\times \text{ }{{\left( -\mathbf{5} \right)}^{\mathbf{2}}}\]
उत्तर: \[{{\left( -3 \right)}^{2}}\times {{\left( -5 \right)}^{2}}=9\times 25=225\]
\[\left( \mathbf{d} \right)\text{ }{{\left( -\mathbf{2} \right)}^{\mathbf{3}}}~\times \text{ }{{\left( -\mathbf{10} \right)}^{\mathbf{3}}}\]
उत्तर: \[{{\left( -2 \right)}^{3}}\times {{\left( -10 \right)}^{3}}=\left( -8 \right)\times \left( -1000 \right)=8000\]
8. निम्नलिखित संख्याओं की तुलना कीजिए:
\[\left( \mathbf{a} \right)\text{ }\mathbf{2}.\mathbf{7}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{12}}},\text{ }\mathbf{1}.\mathbf{5}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{8}}}\]
उत्तर:
\[2.7 > 1.5\]
\[\begin{array}{*{35}{l}} {{10}^{12}}>{{10}^{8}} \\ 2.7\times {{10}^{12}}>1.5\times {{10}^{8}} \\ \end{array}\]
\[\left( \mathbf{b} \right)\text{ }\mathbf{4}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{14}}},\text{ }\mathbf{3}\text{ }\times \text{ }\mathbf{1}{{\mathbf{0}}^{\mathbf{17}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{10}^{14}}<{{10}^{17}} \\ 4\times {{10}^{14}}<3\times {{10}^{17}} \\ \end{array}\]
प्रश्नावली13.2
1. घातांकों के नियमों का प्रयोग करते हुए, सरल कीजिए और उत्तर को घातांकीय रूप में लिखिए:
\[{{\mathbf{3}}^{\mathbf{2}}}\times {{\mathbf{3}}^{\mathbf{4}}}\times {{\mathbf{3}}^{\mathbf{8}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} ~{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}} \\ {{3}^{2}}\times {{3}^{4}}\times {{3}^{8}}={{3}^{2+4+8}} \\ ={{3}^{14}} \\ \end{array}\]
\[{{\mathbf{6}}^{\mathbf{15}}}\div {{\mathbf{6}}^{\mathbf{10}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{a}^{m}}\div {{a}^{n}}={{a}^{m-n}} \\ {{6}^{15}}\div {{6}^{10}}={{6}^{15-10}} \\ ={{6}^{5}} \\ \end{array}\]
\[{{\mathbf{a}}^{\mathbf{3}}}\times {{\mathbf{a}}^{\mathbf{2}}}\]
उत्तर:
\[{{a}^{3}}\times {{a}^{2}}={{a}^{3+2}}={{a}^{5}}\]
\[{{\mathbf{7}}^{\mathbf{x}}}\times {{\mathbf{7}}^{\mathbf{2}}}\]
उत्तर:
\[{{7}^{x}}\times {{7}^{2}}={{7}^{x+2}}\]
\[{{\left( \mathbf{5^2} \right)}^{\mathbf{3}}}\div {{\mathbf{5}}^{\mathbf{3}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} ~{{\left( {{5}^{2}} \right)}^{3}}\div {{5}^{3}} \\ =\dfrac{{{5}^{2+3}}}{{{5}^{3}}} \\ =\dfrac{{{5}^{5}}}{{{5}^{3}}} \\ \begin{align} & ={{5}^{5-3}} \\ & ={{5}^{2}} \\ \end{align} \\ \end{array}\]
\[{{\mathbf{2}}^{\mathbf{5}}}\times {{\mathbf{5}}^{\mathbf{5}}}\]
उत्तर:
\[{{2}^{5}}\times {{5}^{5}}={{10}^{5}}\]
\[{{\mathbf{a}}^{\mathbf{4}}}\times {{\mathbf{b}}^{\mathbf{4}}}\]
उत्तर:
\[{{a}^{4}}\times {{b}^{4}}={{\left( ab \right)}^{4}}\]
\[{{\left( {{\mathbf{3}}^{\mathbf{4}}} \right)}^{\mathbf{5}}}\]
उत्तर:
\[{{\left( {{3}^{4}} \right)}^{5}}={{3}^{4\times 5}}={{3}^{20}}\]
\[\left( {{\mathbf{2}}^{\mathbf{20}}}\div {{\mathbf{2}}^{\mathbf{15}}} \right)\times {{\mathbf{2}}^{\mathbf{3}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \left( \dfrac{{{2}^{20}}}{{{2}^{15}}} \right)\times {{2}^{3}} \\ =\left( {{2}^{20-15}} \right)\times {{2}^{3}} \\ \begin{align} & ={{2}^{5}}\times {{2}^{3}} \\ & ={{2}^{5+3}} \\ & ={{2}^{8}} \\ \end{align} \\ \end{array}\]
\[{{\mathbf{8}}^{\mathbf{t}}}\div {{\mathbf{8}}^{\mathbf{2}}}\]
उत्तर:
\[\dfrac{{{8}^{t}}}{{{8}^{2}}}={{8}^{t-2}}\]
2. निम्नलिखित में से प्रत्येक को सरल करके घातांकीय रूप में व्यक्त कीजिए:
\[\dfrac{{{\mathbf{2}}^{\mathbf{3}}}\times {{\mathbf{3}}^{\mathbf{4}}}\times \mathbf{4}}{\mathbf{3}\times \mathbf{32}}\]
उत्तर:
$\dfrac{{{2}^{3}}\times {{3}^{4}}\times 4}{3\times 32} $
$ =\dfrac{{{2}^{3}}\times {{3}^{4}}\times {{2}^{2}}}{3\times {{2}^{5}}} $
$ ={{2}^{3+2-5}}\times {{3}^{4-1}} $
$ ={{2}^{0}}\times {{3}^{3}} $
$ =1\times {{3}^{3}} $
$={{3}^{3}} $
\[\left( {{\left( {{\mathbf{5}}^{\mathbf{2}}} \right)}^{\mathbf{3}}}\times {{\mathbf{5}}^{\mathbf{4}}} \right)\div {{\mathbf{5}}^{\mathbf{7}}}\]
उत्तर:
\[\dfrac{\left( {{\left( {{5}^{2}} \right)}^{3}}\times {{5}^{4}} \right)}{{{5}^{7}}}\]
$ =\dfrac{{{5}^{6}}\times {{5}^{4}}}{{{5}^{7}}}$
$5^{6+4-7}$
$ ={{5}^{3}} $
\[\mathbf{2}{{\mathbf{5}}^{\mathbf{4}}}\div {{\mathbf{5}}^{\mathbf{3}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{{{25}^{4}}}{{{5}^{3}}} \\ =\dfrac{{{\left( {{5}^{2}} \right)}^{4}}}{{{5}^{3}}} \\ =\dfrac{{{5}^{8}}}{{{5}^{3}}} \\ \begin{align} & ={{5}^{8-3}} \\ & ={{5}^{5}} \\ \end{align} \\ \end{array}\]
\[\dfrac{\mathbf{3}\times {{\mathbf{7}}^{\mathbf{2}}}\times \mathbf{1}{{\mathbf{1}}^{\mathbf{8}}}}{\mathbf{21}\times \mathbf{1}{{\mathbf{1}}^{\mathbf{3}}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{3\times {{7}^{2}}\times {{11}^{8}}}{21\times {{11}^{3}}} \\ =\dfrac{3\times {{7}^{2}}\times {{11}^{8}}}{3\times 7\times {{11}^{3}}} \\ ={{3}^{1-1}}\times {{7}^{2-1}}\times {{11}^{8-3}} \\ \begin{align} & ={{3}^{0}}\times {{7}^{1}}\times {{11}^{5}} \\ & =7\times {{11}^{5}} \\ \end{align} \\ \end{array}\]
\[\dfrac{{{\mathbf{3}}^{\mathbf{7}}}}{{{\mathbf{3}}^{\mathbf{4}}}\times {{\mathbf{3}}^{\mathbf{3}}}}\]
उत्तर:
\[\dfrac{{{3}^{7}}}{{{3}^{4}}\times {{3}^{3}}}\]
\[\begin{array}{*{35}{l}} =\dfrac{{{3}^{7}}}{{{3}^{4+3}}}=\dfrac{{{3}^{7}}}{{{3}^{7}}} \\ ={{3}^{7-7}}={{3}^{0}}=1 \\ \end{array}\]
\[{{\mathbf{2}}^{\mathbf{0}}}+{{\mathbf{3}}^{\mathbf{0}}}+{{\mathbf{4}}^{\mathbf{0}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{2}^{0}}+{{3}^{0}}+{{4}^{0}} \\ \begin{align} & =1+1+1 \\ & =3 \\ \end{align} \\ \end{array}\]
\[{{\mathbf{2}}^{\mathbf{0}}}\times {{\mathbf{3}}^{\mathbf{0}}}\times {{\mathbf{4}}^{\mathbf{0}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{2}^{0}}\times {{3}^{0}}\times {{4}^{0}} \\ \begin{align} & =1\times 1\times 1 \\ & =1 \\ \end{align} \\ \end{array}\]
\[\left( {{\mathbf{3}}^{\mathbf{0}}}+{{\mathbf{2}}^{\mathbf{0}}} \right)\times {{\mathbf{5}}^{\mathbf{0}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} ~\left( {{3}^{0}}+{{2}^{0}} \right)\times {{5}^{0}} \\ \begin{align} & =\left( 1+1 \right)\times 1 \\ & =2\times 1 \\ & =2 \\ \end{align} \\ \end{array}\]
\[\dfrac{{{\mathbf{2}}^{\mathbf{8}}}\times {{\mathbf{a}}^{\mathbf{5}}}}{{{\mathbf{4}}^{\mathbf{3}}}\times {{\mathbf{a}}^{\mathbf{3}}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} ~\dfrac{{{2}^{8}}\times {{a}^{5}}}{{{4}^{3}}\times {{a}^{3}}} \\ =\dfrac{{{2}^{8}}\times {{a}^{5}}^{-3}}{{{2}^{6}}} \\ ={{2}^{8-6}}\times {{a}^{2}}={{2}^{2}}\times {{a}^{2}}={{\left( 2a \right)}^{2}} \\ \end{array}\]
\[\dfrac{~{{\mathbf{a}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{3}}}}{{{\mathbf{a}}^{\mathbf{8}}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{{{a}^{5}}\times {{a}^{3}}}{{{a}^{8}}} \\ \begin{align} & ={{a}^{5+3-8}} \\ & ={{a}^{0}} \\ & =1 \\ \end{align} \\ \end{array}\]
\[\dfrac{{{\mathbf{4}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{8}}}{{\mathbf{b}}^{\mathbf{3}}}}{{{\mathbf{4}}^{\mathbf{5}}}\times {{\mathbf{a}}^{\mathbf{5}}}{{\mathbf{b}}^{\mathbf{2}}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{{{4}^{5}}\times {{a}^{8}}{{b}^{3}}}{{{4}^{5}}\times {{a}^{5}}{{b}^{2}}} \\ =\dfrac{{{a}^{8}}{{b}^{3}}}{{{a}^{5}}{{b}^{2}}} \\ \begin{align} & ={{a}^{8-5}}\times {{b}^{3-2}} \\ & ={{a}^{3}}\times b \\ \end{align} \\ \end{array}\]
\[{{\left( {{\mathbf{2}}^{\mathbf{3}}}\times \mathbf{2} \right)}^{\mathbf{2}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} {{\left( {{2}^{3}}\times 2 \right)}^{2}} \\ \begin{align} & ={{\left( {{2}^{3+1}} \right)}^{2}} \\ & ={{\left( {{2}^{4}} \right)}^{2}} \\ & ={{2}^{8}} \\ \end{align} \\ \end{array}\]
3. बताइए कि निम्नलिखित कथन सत्य है या असत्य तथा अपने उत्तर का कारण भी दीजिए:
\[\mathbf{10}\times\mathbf{1}{{\mathbf{0}}^{\mathbf{11}}}=\mathbf{10}{{\mathbf{0}}^{\mathbf{11}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} LHS\text{ }=~10\times {{10}^{11}}={{10}^{1+11}}={{10}^{12}} \\ \begin{align} & RHS\text{ }=~{{100}^{11}}={{\left( {{10}^{2}} \right)}^{11}}={{10}^{22}} \\ & LHS\ne RHS \\ \end{align} \\ {} \\ \end{array}\]
अतः कथन असत्य है।
\[{{\mathbf{2}}^{\mathbf{3}}}>{{\mathbf{5}}^{\mathbf{2}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} LHS\text{ }=~{{2}^{3}}=8 \\ RHS\text{ }=~{{5}^{2}}=25 \\ LHS\ne RHS \\ \end{array}\]
अतः कथन असत्य है।
$\mathbf{2^3×3^2=6^5}$
उत्तर:
\[\begin{array}{*{35}{l}} LHS\text{ }=~{{2}^{3}}\times {{3}^{2}}=8\times 9=72 \\ RHS\text{ }=~{{6}^{5}}=7776 \\ LHS\ne RHS \\ \end{array}\]
\[{{\mathbf{3}}^{\mathbf{0}}}=\mathbf{100}{{\mathbf{0}}^{\mathbf{0}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} LHS\text{ }=~{{3}^{0}}=1 \\ RHS\text{ }=~{{1000}^{0}}=1 \\ LHS=RHS \\ \end{array}\]
अतः कथन सत्य है।
4. निम्नलिखित में से प्रत्येक को केवल अभाज्य गुणनखंडों की घातों के गुणनफल के रूप में व्यक्त कीजिए:
\[\mathbf{108}\text{ }\times \text{ }\mathbf{192}\]
उत्तर:
\[\begin{array}{*{35}{l}} 108\times 192 \\ ={{2}^{2}}\times {{3}^{3}}\times 192 \\ =2^2\times 3^3\times 2^6\times 3=2^2\times 3^3\times 2^6\times 3 \\ ={{2}^{2+6}}\times {{3}^{3+1}}={{2}^{8}}\times {{3}^{4}} \\ \end{array}\]
\[\mathbf{270}\]
उत्तर: ल0स0 लेने पर ,
\[270=2\times {{3}^{3}}\times 5\]
\[\text{ }\mathbf{729}\text{ }\times \text{ }\mathbf{64}\]
उत्तर: ल0स0 लेने पर
\[\begin{array}{*{35}{l}} 729\times 64 \\ =9\times 9\times 9\times 8\times 8 \\ ={{3}^{2}}\times {{3}^{2}}\times {{3}^{2}}\times {{2}^{3}}\times {{2}^{3}} \\ ={{3}^{2+2+2}}\times {2^{ 3+3}} \\ =3^6\times 2^6=3^6\times 2^6 \\ \end{array}\]
\[\text{ }\mathbf{768}\]
उत्तर: ल0स0 लेने पर
\[~768={{2}^{8}}\times 3\]
5. सरल कीजिए:
\[\dfrac{\left( {{\mathbf{2}}^{\mathbf{5}}} \right)\mathbf{2}\times {{\mathbf{7}}^{\mathbf{3}}}}{{{\mathbf{8}}^{\mathbf{3}}}\times \mathbf{7}}\]
उत्तर: \[\dfrac{{{\left( {{2}^{5}} \right)}^{2}}\times 7}{{{8}^{3}}\times 7^3}\]
\[\begin{array}{*{35}{l}} {} \\ =\dfrac{{{2}^{10}}\times {{7}^{3}}}{{{2}^{9}}\times 7} \\ \end{array}\] \[\begin{array}{*{35}{l}} \begin{align} & ={{2}^{10-9}}\times {{7}^{3-1}} \\ & ={{2}^{1}}\times {{7}^{2}} \\ \end{align} \\ {} \\ \end{array}\]
\[\dfrac{~\mathbf{25}\times {{\mathbf{5}}^{\mathbf{2}}}\times {{\mathbf{t}}^{\mathbf{8}}}}{\mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}\times {{\mathbf{t}}^{\mathbf{4}}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{25\times {{5}^{2}}\times {{t}^{8}}}{{{10}^{3}}\times {{t}^{4}}} \\ =\dfrac{{{5}^{2}}\times {{5}^{2}}\times {{t}^{8}}}{{{2}^{3}}\times {{5}^{3}}\times {{t}^{4}}} \\ =\left( {{5}^{4-3}} \right)\times \dfrac{{{t}^{8-4}}}{{{2}^{3}}} \\ =\dfrac{5\times {{t}^{4}}}{{{2}^{3}}} \\ \end{array}\]
\[\dfrac{{{3}^{5}}\times {{10}^{5}}\times 25}{{{5}^{7}}\times {{6}^{5}}}\]
उत्तर:
\[\begin{array}{*{35}{l}} \dfrac{{{3}^{5}}\times {{10}^{5}}\times 25}{{{5}^{7}}\times {{6}^{5}}} \\ =\dfrac{{{3}^{5}}\times {{2}^{5}}\times {{5}^{5}}\times {{5}^{2}}}{{{5}^{7}}\times {{2}^{5}}\times {{3}^{5}}} \\ ={{3}^{5-5}}\times {{2}^{5-5}}\times {{5}^{5+2-7}} \\ \begin{align} & ={{3}^{0}}\times {{2}^{0}}\times {{5}^{0}} \\ & =1\times 1\times 1 \\ & =1 \\ \end{align} \\ \end{array}\]
प्रश्नावली 13.3
1. निम्नलिखित संख्याओं को प्रसारित रूप में लिखिए:
\[\text{ }\mathbf{279404}\]
उत्तर: \[2\text{ }\times \text{ }{{10}^{5}}~+\text{ }7\text{ }\times \text{ }{{10}^{4~}}+\text{ }9\text{ }\times \text{ }{{10}^{3}}~+\text{ }4\text{ }\times \text{ }{{10}^{2}}~+\text{ }4\text{ }\times \text{ }{{10}^{0}}\]
\[\text{ }\mathbf{3006194}\]
उत्तर: \[3\text{ }\times \text{ }{{10}^{6~}}+\text{ }6\text{ }\times \text{ }{{10}^{3}}~+\text{ }1\text{ }\times \text{ }{{10}^{2}}~+\text{ }9\text{ }\times \text{ }{{10}^{1}}~+\text{ }4\text{ }\times \text{ }{{10}^{0}}\]
\[\text{ }\mathbf{2806196}\]
उत्तर: \[2\text{ }\times \text{ }{{10}^{6}}~+\text{ }8\text{ }\times \text{ }{{10}^{5}}~+\text{ }6\text{ }\times \text{ }{{10}^{3}}~+\text{ }1\text{ }\times \text{ }{{10}^{2}}~+\text{ }9\text{ }\times \text{ }{{10}^{1}}~+\text{ }6\text{ }\times \text{ }{{10}^{0}}\]
\[\text{ }\mathbf{120719}\]
उत्तर: \[1\text{ }\times \text{ }{{10}^{5~}}+\text{ }2\text{ }\times \text{ }{{10}^{4}}~+\text{ }7\text{ }\times \text{ }{{10}^{2~}}+\text{ }1\text{ }\times \text{ }{{10}^{1}}~+9\text{ }\times \text{ }{{10}^{0}}\]
\[\text{ }\mathbf{20068}\]
उत्तर: \[2\text{ }\times \text{ }{{10}^{4}}~+\text{ }6\text{ }\times \text{ }{{10}^{1}}~+\text{ }8\text{ }\times \text{ }{{10}^{0}}\]
2. निम्नलिखित प्रसारित रूपों में से प्रत्येक के लिए संख्या ज्ञात कीजिए:
\[\mathbf{8}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}+\mathbf{6}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}+\mathbf{0}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{4}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{1}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]
\[\mathbf{4}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{5}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{3}}}+\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{2}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]
\[\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{4}}}+\mathbf{7}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{5}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{0}}}\]
\[\mathbf{9}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{5}}}+\mathbf{2}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{2}}}+\mathbf{3}\times \mathbf{1}{{\mathbf{0}}^{\mathbf{1}}}\]
उत्तर: \[\left( i \right)\text{ }86045,\text{ }\left( ii \right)\text{ }400532,\text{ }\left( iii \right)\text{ }30705,\text{ }\left( iv \right)\text{ }90023\]
3. निम्नलिखित संख्याओं को मानक रूप में व्यक्त कीजिए:
\[\text{ }\mathbf{5},\mathbf{00},\mathbf{00},\mathbf{000}\]
उत्तर: \[~5\text{ }\times \text{ }{{10}^{7}}\]
\[\text{ }\mathbf{70},\mathbf{00},\mathbf{000}\]
उत्तर: \[7\text{ }\times \text{ }{{10}^{6}}\]
3, 18, 65, 00, 00
उत्तर: \[3.1865\text{ }\times \text{ }{{10}^{9}}\]
\[\text{ }\mathbf{3},\mathbf{90},\mathbf{878}\]
उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{5}}\]
\[\text{ }\mathbf{39087}.\mathbf{8}\]
उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{4}}\]
\[\text{ }\mathbf{3908}.\mathbf{78}\]
उत्तर: \[3.90878\text{ }\times \text{ }{{10}^{3}}\]
4. निम्नलिखित प्रश्नों में प्रकट होने वाली (आने वाली) संख्याओं को मानक रूप में व्यक्त कीजिए।
पृथ्वी और चंद्रमा के बीच की दूरी \[\mathbf{384},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] है।
उत्तर: \[3.84\text{ }\times \text{ }{{10}^{8}}~m\]
निर्वात स्थान में प्रकाश की चाल (या वेग) \[\mathbf{300},\mathbf{000},\mathbf{000}\left( \text{ }\mathbf{m} \right)/\left( \mathbf{sec}. \right)\]है।
उत्तर: \[3\text{ }\times \text{ }{{10}^{8}}~m/sec\]
पृथ्वी का व्यास \[\mathbf{12756000}\text{ }\mathbf{m}\] है।
उत्तर: \[1.2756\text{ }\times \text{ }{{10}^{7}}\]
सूर्य का व्यास \[\mathbf{1},\mathbf{400},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] है।
उत्तर: \[1.4\text{ }\times \text{ }{{10}^{9}}~m\]
एक आकाश गंगा में औसतन \[\mathbf{100},\mathbf{000},\mathbf{000},\mathbf{000}\]तारे हैं।
उत्तर: \[1\text{ }\times \text{ }{{10}^{11}}\]
विश्व मंडलमंडल (या सौर मंडल) \[\mathbf{12},\mathbf{000},\mathbf{000},\mathbf{000}\] वर्ष पुराना आकलित किया गया है।
उत्तर: \[1.2\text{ }\times \text{ }{{10}^{10}}~years\]
आकाश गंगा के मध्य से सूर्य की दूरी \[\mathbf{300},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000}\text{ }\mathbf{m}\] आकलित की गई है।
उत्तर: \[3\text{ }\times \text{ }{{10}^{20}}~m\]
\[\mathbf{1}.\mathbf{8}\text{ }\mathbf{g}\] भार वाली पानी की एक बूंद में \[\mathbf{60},\mathbf{230},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000},\mathbf{000}\]अणु (molecules) होते हैं।
उत्तर: \[6.023\text{ }\times \text{ }{{10}^{22~}}molecules\]
पृथ्वी में \[1,353,000,000k{{m}^{3}}\]समुद्र जल है।
उत्तर: \[1.353\text{ }\times \text{ }{{10}^{9}}~k{{m}^{3}}\]
मार्च 2001 में भारत की जनसंख्या \[\mathbf{1},\mathbf{027},\mathbf{000},\mathbf{000}\]थी।
उत्तर: \[1.027\text{ }\times \text{ }{{10}^{9}}\]
NCERT Solutions for Class 7 Maths Chapter 13 Exponents and Powers In Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 7 Maths Chapter 13 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 7 Maths Chapter 13 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 7 Maths Chapter 13 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 7 Maths Exponents and Powers solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 7 Maths Exponents and Powers in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 7 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 7 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.
FAQs on NCERT Solutions for Class 7 Maths In Hindi Chapter 13 Exponents and Powers
1. Where to download NCERT Solutions for Class 7 Maths Chapter 13?
You can download NCERT Solutions for Class 7 Maths from Vedantu’s website (vedantu.com). Vedantu is a trusted and student-friendly website. It follows CBSE guidelines while preparing the solutions so the answers are apt and adequate. You can even download NCERT solutions in PDF format. You can download the PDF for free and study offline without any distractions. You can also download the Vedantu Learning app for the NCERT solutions as well.
2. What are the applications of learning NCERT Solutions for Class 7 Maths Chapter 13?
Chapter 13 ‘exponents and powers’ is not a long chapter but covers many concepts. The chapter cover concepts of exponents and related laws, multiplication and division of powers with the same base, multiplication and division of powers with same exponents, decimal number system, taking the power of a power, expressing large numbers in a standard form and miscellaneous examples using the law of exponents. The exercises of this chapter are based on these concepts.
3. Why Should I Practice NCERT Solutions Class 7 Maths Exponents and Powers Chapter 13?
Exponents and powers is not a lengthy chapter and you can easily score good marks in it. NCERT Solution helps you to understand the basic concepts of the chapter and examples. By practising from NCERT Solutions you will get an idea of the types of questions asked and all the steps you should include in answers. Continuous practice of exercise and examples from NCERT solutions will improve your grade and time management skills.
4. How Many Questions are there in Class 7 Maths NCERT Solutions Chapter 13 Exponents and Powers?
NCERT Solutions consists of solutions to all the questions of the 3 exercises. It also consists of 20 important questions from the chapter. It also provides you with extra questions that are frequently asked over the years. You can also find answers to miscellaneous exercises. NCERT Solutions also contains examples from NCERT as well as new examples for a better understanding of the concept. All questions are divided into the above categories.
5. Is Class 7 Maths Chapter 13 Exponents and Powers important?
Each chapter is important for students in exams as each chapter carries marks. Exponents and powers is a scoring chapter for students as it is not very lengthy and only contains 3 exercises. This chapter is also a base for mathematics of higher standards. If the concepts are clear to you now, you will find many chapters easy in higher standards. Exponents and powers is an easy chapter to revise and not one student should skip.