Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 8 Maths Chapter 10 - Exponents and Powers Exercise 10.1

ffImage

NCERT Solutions for Maths Class 8 Chapter 10 Exercise 10.1 - FREE PDF Download

The NCERT Solutions for Maths Class 8 Chapter 10 Exercise 10.1 - Exponents and Powers, provided by Vedantu, offer a comprehensive understanding of the basic concepts of exponents. This exercise focuses on the laws of exponents, such as the product of powers, quotient of powers, and power of a power. These concepts are essential as they form the foundation for more advanced mathematical topics.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Class 8 Chapter 10 Exercise 10.1 - FREE PDF Download
2. Glance on NCERT Solutions Maths Chapter 10 Exercise 10.1 Class 8 | Vedantu
3. Access NCERT Solutions for Maths Class 8 Chapter 10 - Exponents and Powers
4. Class 8 Maths Chapter 10: Exercises Breakdown
5. CBSE Class 8 Maths Chapter 10 Other Study Materials
6. Chapter-Specific NCERT Solutions for Class 8 Maths
7. Important Related Links for CBSE Class 8 Maths
FAQs


It is important to pay attention to the step-by-step solutions provided, as they simplify complex problems and make it easier to grasp the underlying principles. Focus on understanding how to apply the laws of exponents in different scenarios. Regular practice with these solutions will help build a strong foundation in exponents and powers, ensuring success in future mathematical challenges.


Glance on NCERT Solutions Maths Chapter 10 Exercise 10.1 Class 8 | Vedantu

  • Maths Class 8 Chapter 10 Exercise 10.1 explains the basic concepts and laws of exponents, which are crucial for understanding higher-level mathematics.

  • An exponent represents the number of times a base is multiplied by itself.

  • The product of powers rule states that when multiplying two exponents with the same base, you add the exponents.

  • The quotient of powers rule indicates that when dividing two exponents with the same base, you subtract the exponents.

  • The power of a power rule states that when raising an exponent to another exponent, you multiply the exponents.

  • Negative exponents represent the reciprocal of the base raised to the positive exponent.

  • The zero exponent rule states that any base raised to the power of zero equals one.

  • There are 7 fully solved questions in Class 8 Math Exercise 10.1 Exponents and Powers.

Access NCERT Solutions for Maths Class 8 Chapter 10 - Exponents and Powers

Exercise 10.1

1. Evaluate

(i) \[{3^{ - 2}}\]

Ans: Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], to evaluate \[{3^{ - 2}}\].

Therefore,

$  {3^{ - 2}} = \dfrac{1}{{{3^2}}}  \\ $

$ \dfrac{1}{{{3^2}}} = \dfrac{1}{9} \\ $

Thus, the final value of \[{3^{ - 2}}\] is \[\dfrac{1}{9}\].


(ii) \[{\left( { - 4} \right)^{ - 2}}\]

Ans:

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],to evaluate \[{\left( { - 4} \right)^{ - 2}}\].

Therefore,

$ \Rightarrow  {\left( { - 4} \right)^{ - 2}} = \dfrac{1}{{{{\left( { - 4} \right)}^2}}} \\  $

 $ \Rightarrow\dfrac{1}{{{{\left( { - 4} \right)}^2}}} = \dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} \\ $

Using property \[\left( { - a} \right) \times \left( { - a} \right) = {a^2}\]

$  \Rightarrow\dfrac{1}{{\left( { - 4} \right) \times \left( { - 4} \right)}} = \dfrac{1}{{{4^2}}} \\ $

$ \Rightarrow\dfrac{1}{{{4^2}}} = \dfrac{1}{{16}} \\ $

Thus, the final value of \[{\left( { - 4} \right)^{ - 2}}\] is \[\dfrac{1}{{16}}\].


(iii)  \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\]

Ans.

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], to evaluate \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\].

Therefore,

$ \Rightarrow{\left( {\dfrac{1}{2}} \right)^{ - 5}} = \dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{{{1^{ - 5}}}}{{{2^{ - 5}}}} = \dfrac{1}{{{2^{ - 5}}}} \\ $

$ \Rightarrow\dfrac{1}{{{2^{ - 5}}}} = {2^5} \\ $

$ \Rightarrow{2^5} = 2 \times 2 \times 2 \times 2 \times 2 = 32 \\ $

Thus the final value of \[{\left( {\dfrac{1}{2}} \right)^{ - 5}}\] is 32.


2. Simplify and express the result in power notation with positive exponent.

(i) \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\]

Ans: To solve this problem, it has to use property \[{a^m} \div {a^n} = {a^{m - n}}\]

Therefore,

$ {\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8} = {\left( { - 4} \right)^{5 - 8}} \\ $

$ = {\left( { - 4} \right)^{ - 3}} \\ $

Again, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\]

Therefore,

\[{\left( { - 4} \right)^{ - 3}} = \dfrac{1}{{{{\left( { - 4} \right)}^3}}}\]

So, the simplified form of \[{\left( { - 4} \right)^5} \div {\left( { - 4} \right)^8}\] is \[\dfrac{1}{{{{\left( { - 4} \right)}^3}}}\].


(ii) \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\]

Ans: To solve this problem, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\]

Therefore,

$ {\left( {\dfrac{1}{{{2^3}}}} \right)^2} = \dfrac{1}{{{2^{2 \times 3}}}} \\ $

$ = \dfrac{1}{{{2^6}}} \\ $

So, the simplified form of  \[{\left( {\dfrac{1}{{{2^3}}}} \right)^2}\] is \[\dfrac{1}{{{2^6}}}\].


(iii) \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\]

Ans: To solve this problem, it has to use property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\].

Therefore,

\[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4} = {\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Again using the property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\]

Therefore, the above expression will be written as 

\[{\left( { - 3} \right)^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}}\]

Also,

\[{\left( { - 1} \right)^4} = 1\]

Therefore,

 $ {\left( { - 1} \right)^4} \times {3^4} \times \dfrac{{{5^4}}}{{{3^4}}} = {3^{4 - 4}} \times {5^4} \\ $

$ = {3^0} \times {5^4} \\ $

Also,

\[{x^0} = 1\]

Therefore,

\[{3^0} \times {5^4} = {5^4}\]

So the simplified form of  \[{\left( { - 3} \right)^4} \times {\left( {\dfrac{5}{3}} \right)^4}\] is \[{5^4}\].


(iv)   \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\]

Ans: Given equation \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\], can be written as

$ \Rightarrow {3^{ - 7 - \left( { - 10} \right)}} \times {3^{ - 5}}$    $\left[ {SINCE\,\,\,{a^m} \div {a^n} = {a^{m - n}}} \right]$

$ \Rightarrow {3^{\left( { - 7 + 10} \right)}} \times {3^{ - 5}}$

$ \Rightarrow {3^3} \times {3^{ - 5}}$

$ \Rightarrow {3^{\left( {3 + \left( { - 5} \right)} \right)}}$          $\left[ {SINCE\,\,\,{a^m} \times {a^n} = {a^{\left( {m + n} \right)}}} \right]$

$ \Rightarrow {3^{\left( {3 - 5} \right)}}$

$ \Rightarrow {3^{ - 2}}$

$ \Rightarrow \frac{1}{{{3^2}}}$

So, the simplified form of \[\left( {{3^{ - 7}} \div {3^{ - 10}}} \right) \times {3^{ - 5}}\] is $\frac{1}{{{3^2}}}$.


(v)  \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\]

Ans: To solve this problem, it has to use property

\[{a^{ - n}} = \dfrac{1}{{{a^n}}}\].

Therefore,

\[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}} = \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}}\]

Again using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\].

Therefore,

Above expression will be written as,

$ \dfrac{1}{{{2^3}}} \times \dfrac{1}{{{{\left( { - 7} \right)}^3}}} = \dfrac{1}{{{{\left[ {2 \times \left( { - 7} \right)} \right]}^3}}} \\ $

$ = \dfrac{1}{{{{\left( { - 14} \right)}^3}}} \\ $

So, the simplified form of \[{2^{ - 3}} \times {\left( { - 7} \right)^{ - 3}}\] is \[\dfrac{1}{{{{\left( { - 14} \right)}^3}}}\].


3. Find the value of 

(i) \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\]

Ans: To solve this problem, it has to use property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\] and \[{x^0} = 1\].

Therefore,

$ \left( {{3^0} + {4^{ - 1}}} \right) \times {2^2} = \left( {1 + \dfrac{1}{4}} \right) \times 4 \\ $

$ = \dfrac{5}{4} \times 4 \\ $

$  = 5 \\ $

So, the value of \[\left( {{3^0} + {4^{ - 1}}} \right) \times {2^2}\] is 5.


(ii) \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\]

Ans:

\[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}}\]

To solve this expression, it has to use property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\].

Therefore,

\[\left( {{2^{ - 1}} \times {{\left\{ {{{\left( 2 \right)}^2}} \right\}}^{ - 1}}} \right) \div {2^{ - 2}} = \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}}\]

Using property \[{a^m} \times {a^n} = {a^{m + n}}\],

$ \left( {{2^{ - 1}} \times {2^{ - 2}}} \right) \div {2^{ - 2}} = {2^{\left( { - 1 - 2} \right)}} \div {2^{ - 2}} \\ $

$ = {2^{ - 3}} \div {2^{ - 2}} \\ $

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\],

$ {2^{ - 3}} \div {2^{ - 2}} = {2^{\left( { - 3 - \left( { - 2} \right)} \right)}} \\ $

$ = {2^{\left( { - 3 + 2} \right)}} \\ $

$ = {2^{ - 1}} \\ $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

\[{2^{ - 1}} = \dfrac{1}{2}\]

So the value of  \[\left( {{2^{ - 1}} \times {4^{ - 1}}} \right) \div {2^{ - 2}}\] is \[\dfrac{1}{2}\].


(iii) \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\]

Ans: To solve this problem above expression can be written as 

$  {\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}} = {\left( {\dfrac{2}{1}} \right)^2} + {\left( {\dfrac{3}{1}} \right)^2} + {\left( {\dfrac{4}{1}} \right)^2} \\ $

$ = {2^2} + {3^2} + {4^2} \\ $

$ = 4 + 9 + 16 \\ $

$ = 29 \\ $

Therefore the value of \[{\left( {\dfrac{1}{2}} \right)^{ - 2}} + {\left( {\dfrac{1}{3}} \right)^{ - 2}} + {\left( {\dfrac{1}{4}} \right)^{ - 2}}\] is 29.

(iv) \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\]

Ans: To solve this problem, it has to use property \[{x^0} = 1\],

Therefore,

\[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0} = 1\]

So the value of \[{\left( {{3^{ - 1}} + {4^{ - 1}} + {5^{ - 1}}} \right)^0}\] is 1.


(v) \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\]

The above expression can be written as,

\[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2} = {\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2}\]

Now, using the property\[{\left( {{a^m}} \right)^n} = {a^{mn}}\],

\[{\left\{ {{{\left( {\dfrac{3}{{ - 2}}} \right)}^2}} \right\}^2} = {\left( {\dfrac{3}{{ - 2}}} \right)^4}\]

Using the property  \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\],

$  {\left( {\dfrac{3}{{ - 2}}} \right)^4} = \dfrac{{{{\left( 3 \right)}^4}}}{{{{\left( { - 2} \right)}^4}}} \\ $

$ = \dfrac{{81}}{{16}} \\ $

So the value of \[{\left\{ {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right\}^2}\] is \[\dfrac{{81}}{{16}}\].


4. Evaluate

(i) \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\]

Ans: To solve this question, using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\],

So, the above expression becomes,

\[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}} = \dfrac{{{2^4} \times {5^3}}}{{{8^1}}}\]

8 can be written as \[2 \times 2 \times 2 = {2^3}\]

Therefore,

\[\dfrac{{{2^4} \times {5^3}}}{{{8^1}}} = \dfrac{{{2^4} \times {5^3}}}{{{2^3}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

 $ \dfrac{{{2^4} \times {5^3}}}{{{2^3}}} = {2^{4 - 3}} \times {5^3} \\ $

 $ = {2^1} \times {5^3} \\ $

 $ = 2 \times 125 \\ $

 $ = 250 \\ $

So the value of \[\dfrac{{{8^{ - 1}} \times {5^3}}}{{{2^{ - 4}}}}\] is 250.


(ii) \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\]

Ans: To solve this problem, using property \[{a^m} \times {b^m} = {\left( {ab} \right)^m}\],

Therefore,

$\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}} = {\left( {5 \times 2} \right)^{ - 1}} \times {6^{ - 1}} $

$= {10^{ - 1}} \times {6^{ - 1}} $

Using the property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

${10^{ - 1}} \times {6^{ - 1}} $

$= \dfrac{1}{{10}} \times \dfrac{1}{6} $

$ = \dfrac{1}{{60}} $

So, the value of \[\left( {{5^{ - 1}} \times {2^{ - 1}}} \right) \times {6^{ - 1}}\] is \[\dfrac{1}{{60}}\].


5. Find the value of \[m\] for which \[{5^m} \div {5^{ - 3}} = {5^5}\].

Ans: The given equation is \[{5^m} \div {5^{ - 3}} = {5^5}\]

To solve this problem, use the property \[{a^m} \div {a^n} = {a^{m - n}}\].

Therefore,

$\Rightarrow  {5^m} \div {5^{ - 3}} = {5^5} $

$\Rightarrow{5^{\left( {m - \left( { - 3} \right)} \right)}} = {5^5} $

\[\Rightarrow{5^{m + 3}} = {5^5} \]

As the base of the power on both sides is the same, so their power must be equal.

Therefore,

$ m + 3 = 5 $

$\Rightarrow m = 5 - 3 $ 

$\Rightarrow m = 2 $

So the value  of \[m\] is 2.


6. Evaluate 

(i) \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Ans: The given expression is

\[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\]

Above expression can be written as

${\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}$

$ = {\left\{ {\left( {\dfrac{3}{1}} \right) - \left( {\dfrac{4}{1}} \right)} \right\}^{ - 1}} $

$= {\left( {3 - 4} \right)^{ - 1}} $

$= {\left( { - 1} \right)^{ - 1}} $

Using property \[{a^{ - n}} = \dfrac{1}{{{a^n}}}\], we get

$  {\left( { - 1} \right)^{ - 1}} $

$= \dfrac{1}{{ - 1}} $

 $  =  - 1 $

So the value of \[{\left\{ {{{\left( {\dfrac{1}{3}} \right)}^{ - 1}} - {{\left( {\dfrac{1}{4}} \right)}^{ - 1}}} \right\}^{ - 1}}\] is \[ - 1\].


(ii) \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Ans: The given expression is

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\]

Above expression can be written as,

\[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}} = {\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4}\]

Using property \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\], we get,

\[{\left( {\dfrac{8}{5}} \right)^7} \times {\left( {\dfrac{5}{8}} \right)^4} = \dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$\dfrac{{{8^7} \times {5^4}}}{{{5^7} \times {8^4}}} = \dfrac{{{8^{7 - 4}}}}{{{5^{7 - 4}}}} $

$= \dfrac{{{8^3}}}{{{5^3}}} $

$= \dfrac{{512}}{{125}} $

So the value of \[{\left( {\dfrac{5}{8}} \right)^{ - 7}} \times {\left( {\dfrac{8}{5}} \right)^{ - 4}}\] is \[\dfrac{{512}}{{125}}\].


7. Simplify 

(i) \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\left( {t \ne 0} \right)\]

Ans: 25 can be written as \[{5^2}\].

10 can be written as \[2 \times 5\].

Therefore, above expression can be written as,

\[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}} = \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}}\]

Using the property \[{a^m} \div {a^n} = {a^{m - n}}\] and \[{a^m} \times {a^n} = {a^{m + n}}\], we get

$ \dfrac{{{5^2} \times {t^{ - 4}}}}{{{5^{ - 3}} \times 2 \times 5 \times {t^{ - 8}}}} $

$= \dfrac{{{5^2} \times {t^{\left( { - 4 - \left( { - 8} \right)} \right)}}}}{{{5^{ - 3 + 1}} \times 2}} $

$   = \dfrac{{{5^2} \times {t^4}}}{{{5^{ - 2}} \times 2}} $

$   = \dfrac{{{5^{\left( {2 - \left( { - 2} \right)} \right)}} \times {t^4}}}{2} $

 $  = \dfrac{{{5^4} \times {t^4}}}{2} $

 $  = \dfrac{{625{t^4}}}{2} $

So the  value of  \[\dfrac{{25 \times {t^{ - 4}}}}{{{5^{ - 3}} \times 10 \times {t^{ - 8}}}}\] is \[\dfrac{{625{t^4}}}{2}\].


(ii) \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Ans: To solve this problem, 125 can be written as \[{5^3}\].

Therefore, to simplify the expression, we will write the given numbers in terms of 2 and 5 using exponent property.

Hence,

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}}\]

Using property \[{\left( {ab} \right)^m} = {a^m} \times {b^m}\], we get

\[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {6^{ - 5}}}} = \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}}\]

Using property \[{a^m} \div {a^n} = {a^{m - n}}\], we get

$ \dfrac{{{3^{ - 5}} \times {2^{ - 5}} \times {5^{ - 5}} \times {5^3}}}{{{5^{ - 7}} \times {2^{ - 5}} \times {3^{ - 5}}}} $

$= {3^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {2^{\left( { - 5 - \left( { - 5} \right)} \right)}} \times {5^{\left( { - 5 + 3 - \left( { - 7} \right)} \right)}} $

$= {3^0} \times {2^0} \times {5^5} $

Using property \[{x^0} = 1\], we get

\[{3^0} \times {2^0} \times {5^5} = {5^5}\]

So the value of \[\dfrac{{{3^{ - 5}} \times {{10}^{ - 5}} \times 125}}{{{5^{ - 7}} \times {6^{ - 5}}}}\] is \[{5^5}\].


Conclusion

NCERT Solutions for Maths Exercise 10.1 in Class 8 Chapter 10 - Exponents and Powers, provided by Vedantu, offer a thorough understanding of the fundamental rules of exponents. It is important to focus on grasping the product, quotient, and power of a power rules, as well as the concepts of negative and zero exponents. Regular practice of class 8 math exercise 10.1 solutions helps in mastering these concepts, which are crucial for advanced mathematics. Vedantu's step-by-step explanations make learning these principles easier and more effective.


Class 8 Maths Chapter 10: Exercises Breakdown

Exercise

Number of Questions

Exercise 10.2

4 Questions with Solutions


CBSE Class 8 Maths Chapter 10 Other Study Materials


Chapter-Specific NCERT Solutions for Class 8 Maths

Given below are the chapter-wise NCERT Solutions for Class 8 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 8 Maths

FAQs on NCERT Solutions for Class 8 Maths Chapter 10 - Exponents and Powers Exercise 10.1

1. What is meant by the term exponent?

An exponent of a number depics the counter of time then the number is multiplied to itself. If it is multiplied by 8 for n times then it is represented as 

8×8×8×….n times = 8^n

The above expression, 8^n, is said as 8^n. Therefore exponents are also known as power or sometimes indices.

2. What are powers and exponents?

Power is an expression that represents the repeated multiplication of a digit or any Integer. Usually a raise to power and is a power where a is the base and un is the exponent. For instance 6³ is the power which shows that 6 is multiplied by itself by 3 times.

3. Define negative exponents?

A negative exponent is used when one is divided by repeated multiplication of a factor. Like, 1 ∕ n is given by minus 1 we are -1 is the exponent. For example, 3²  is represented by 3².

4. Why should one focus on NCERT Solutions for Class 8 Math Exercise 10.1?

When it comes to exam preparation, the NCERT solution for class 8 maths ch ex 10.1 solutions from vedantu is thought to be the best choice for CBSE students. There are numerous exercises in this chapter. On this page in PDF format, we have the class 8 maths ch ex 10.1 solutions solution. This solution is available for download at your convenience.

5. Why should I practice class 8 maths ch ex 10.1 solutions exercise 10.1?

The NCERT book and solutions have been prepared by the best and most highly skilled educators and Scholars and have created the content in such a way that all the math concepts could be understood by each student. Practice class 8 math exercise 10.1 will have you in clearing your basics about the concept of exponents and powers will help you as you go through the chapter. The NCERT math book has explained the concept of exponents, on which the first exercise is based with the help of solved examples which are written in the easiest way.

6. What topics are covered in Class 8 Ch 10 Maths Ex 10.1?

Class 8 Ch 10 Maths Ex 10.1 covers the basic concepts and laws of exponents, including the product of powers, quotient of powers, power of a power, negative exponents, and zero exponents.

7. What is the product of powers rule in class 8 maths chapter 10 exercise 10.1 question 3?

In class 8 maths chapter 10 exercise 10.1 question 3, the product of powers rule states that when multiplying two exponents with the same base, you add the exponents. For example, $a^{m}\times a^{n}=a^{m+n}$.

8. What is the quotient of powers rule in class 8 maths chapter 10.1?

In class 8 maths chapter 10.1, the quotient of powers rule indicates that when dividing two exponents with the same base, you subtract the exponents. For example, $\frac{a^{m}}{a^{n}}=a^{m-n}$.

9. What is the power of a power rule in class 8 chapter 10 maths exercise 10.1?

In class 8 chapter 10 maths exercise 10.1, the power of a power rule states that when raising an exponent to another exponent, you multiply the exponents. For example, $(a^{m})^{n}=a^{m\times n}$.

10. What is the negative exponent rule in Class 8 Math Ex 10.1?

In Class 8 Math Ex 10.1 the negative exponent rule represents the reciprocal of the base raised to the positive exponent. For example, $a^{-n}=\frac{1}{a^{n}}$.