Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume

ffImage
banner

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume - FREE PDF Download

Class 9 Maths NCERT Solutions for Chapter 11 Surface Areas and Volumes cover all of the chapter's questions (All Exercises). These have been carefully created in accordance with the most recent CBSE Class 9 Maths Syllabus. Students can use these NCERT Solutions for Class 9 to reinforce their foundations. Subject experts at Vedantu have created the continuity and differentiability class 9 NCERT solutions to ensure they match the current curriculum and help students while solving or practising problems.

toc-symbolTable of Content
toggle-arrow


Glance of NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes

  • Surface Area and Volume covers the concepts of finding the total area covering a 3D shape (surface area) and the space occupied by that shape (volume).

  • Learn formulas to calculate the surface area of:

  • Cuboid (including separate formulas for TSA and LSA)

  • Cube (a special case of cuboid)

  • Right Circular Cylinder (including separate formulas for TSA and LSA)

  • Right Circular Cone

  • Sphere

  • Understanding Volume: This explains what volume is and how it differs from surface area.

  • Learn formulas to calculate the volume of: Cuboid, Cube (a special case of cuboid), Right Circular Cone and Sphere.

  • This article contains chapter notes, exercises, links and important questions for Chapter 11 - Surface Areas and Volumes which you can download as PDFs.

  • There are four exercises (36 fully solved questions) in class 9th maths chapter 11 Surface Areas And Volumes.


Access Exercise Wise NCERT Solutions for Chapter 11 Maths Class 9

Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science
Watch videos on

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume
Previous
Next
Vedantu 9&10
Subscribe
iconShare
Surface Area and Volume L-1 | Surface Area & Volume of Cuboid & Cube | CBSE 9 Maths Ch 13 | Term 2
5.2K likes
122.2K Views
3 years ago

Exercises under NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas and Volumes

  • Exercise 11.1: This exercise explains the surface area and volume of a cylinder. This section helps the students to understand how to find the surface area of a right circular cylinder. We need to split the cylinder into two parts: the middle part and the bottom part.

The curved surface area of cylinder= 2πrh

Total surface area of cylinder = πr2(r+h)

  • Exercise 11.2: This exercise explains the surface area and volume of a cone.

This section explains about the cone which has a triangle shape and circle shape. By combining these two areas, Class 9 Surfaces Area and Volumes, the formula of the cone is derived as below,

Curved Surface Area of a Cone = ½  × l ×2πr = πrl

Total Surface Area of a Cone = πrl + πr2 = πr (l + r)

  • Exercise 11.3: This exercise includes the conversion of one solid from one shape to another. This covers the volume of a cylinder. 

Volume of a Cylinder = πr2h

  • Exercise 11.4: This exercise contains word problems that are based on the surface area and volume of 3D shapes. This understands the difference between cylinder and cone. From that, they derived a formula for the volume of a cone is ⅓ πr2h.


Access NCERT Solutions for Class 9 Maths Chapter 11 - Surface Areas and Volumes

Exercise (11.1)

1. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area. [Assume π=227]

Ans: We are given the following:

The slant height (l) of the cone = 10 cm

The diameter of the base of cone = 10.5 cm


The diameter of the base of cone


So, the radius (r) of the base of cone 10.52 cm = 5.25 cm

The curved surface area of cone, A = π rl

A = (227 × 5.25 × 10) cm2

A = (22 × 0.75 × 10) cm2

A = 165 cm2

Therefore, the curved surface area of the cone is 165 cm2.

2. Find the total surface area of a cone, if its slant height is 21 mand diameter of its base is 24 m. [Assume π=227]

Ans: We are given the following:

The slant height (l) of the cone = 21 m

The diameter of the base of cone = 24 m


the base of cone


So, the radius (r) of the base of cone 242 m = 12 m

The total surface area of cone, A = π r(l + r)

A = (227 × 12 × (21 + 12)) m2

A = (227 × 12 × 33) m2

A = 1244.57 m2

Therefore, the total surface area of the cone is 1244.57 m2.

3. Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find

(i) Radius of the base and

Ans: It is given that the slant height (l) of the cone = 14 cm

The curved surface area of the cone = 308 cm2

Let us assume the radius of base of the cone be r.


Let us assume the radius of base of the cone be


We know that curved surface area of the cone π rl

 π rl = 308 cm2

(227 × r × 14) cm = 308 cm2

r = 30844 cm

r = 7 cm

Hence, the radius of the base is 7 cm.

(ii) Total surface area of the cone. [Assume π=227]

Ans: The total surface area of the cone is the sum of its curved surface area and the area of the base.

Total surface area of cone, A = π rl + π r2

A = [308 + 227 × (7)2] cm2

A = [308 + 154] cm2

A = 462 cm2

Hence, the total surface area of the cone is 462 cm2.

4. A conical tent is 10 m high and the radius of its base is 24 m. Find

(i) slant height of the tent

Ans:


slant height of the tent


From the figure we can say that ABC is a conical tent.

It is given that the height (h) of conical tent = 10 m

The radius (r) of conical tent = 24 m

Let us assume the slant height as l.

In  Δ ABD, we will use Pythagorean Theorem.

AB2 = AD 2 + BD2

l2 = h2 + r2

l2 = (10 m)2 + (24 m)2

l2 = 676 m2

l = 26 m

The slant height of the tent is 26 m.

(ii) cost of canvas required to make the tent, if cost of m2 canvas is Rs. 70. [Assume π=227]

Ans: The curved surface area of the tent, A = π rl

A = (227 × 24 × 26) m2

A = (137287) m2

It is given that the cost of m2 of canvas = Rs. 70

So, the cost of 137287 m2 canvas = Rs(137287 × 70) = Rs. 137280

Hence, the cost of canvas required to make the tent is Rs. 137280.

5. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm. [Use π = 3.14]

Ans: We are given the following:

The base radius (r) of tent = 6 m

The height (h) of tent = 8 m


The base radius


So the slant height of the tent, l = r2 + h2 

l = (62 + 82) m

l = (100) m

l = 10 m

The curved surface area of the tent, A = π rl

A = (3.14 × 6 × 10) m2

A = 188.4 m2

It is give the width of tarpaulin = 3 m

Let us assume the length of the tarpaulin sheet required be x.

It is given that there will be a wastage of 20 cm.

So, the new length of the sheet =(x - 0.2) m

We know that the area of the rectangular sheet required will be the same as curved surface area of the tent.

[(x - 0.2) × 3] m = 188.4 m2

x - 0.2 m = 62.8 m

x = 63 m

The length of tarpaulin sheet required is 63 m.

6. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of Rs. 210 per 100 m2. [Assume π=227]

Ans: We are given the following:

The base radius (r) of tomb = 7 m

The slant height (l) of tomb = 25 m


The curved surface area of the conical tomb


The curved surface area of the conical tomb, A = π rl

A = (227 × 7 × 25) m2

A = 550 m2

It is given that the cost of white-washing m2 area = Rs. 210

So, the cost of white-washing 550 m2 area = Rs(210100 × 550) = Rs. 1155

Hence, the cost of white-washing the curved surface area of a conical tomb is Rs. 1155.

7. A joker’s cap is in the form of right circular cone of base radius 7 cm and the height 24 cm. Find the area of sheet required to make 10 such caps. [Assume π=227]

Ans: We are given the following:

The base radius (r) of conical cap = 7 cm

The height (h) of conical cap = 24 cm


the slant height of the tent


So the slant height of the tent, l = r2 + h2 

l = (72 + 242) cm

l = (625) cm

l = 25 cm

The curved surface area of one conical cap, A = π rl

A = (227 × 7 × 25) cm2

A = 550 cm2

So, the curved surface area of 10 conical caps (550 × 10) cm2 = 5500 cm2

Therefore, the total area of sheet required is 5500 cm2.

8. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is Rs. 12 per m2, what will be the cost of painting all these cones? 

[Use π = 3.14 and take 1.02=1.02]

Ans: We are given the following:

The base radius (r) of cone 402 = 20 cm = 0.2 m

The height (h) of cone = 1 m


the slant height of the cone


So the slant height of the cone, l = r2 + h2 

l = ((0.2)2 + (1)2) m

l = (1.04) m

l = 1.02 m

The curved surface area of one cone, A = π rl

A = (3.14 × 0.2 × 1.02) m2

A = 0.64056 cm2

So, the curved surface area of 50 cones (50 × 0.64056) m2 = 32.028 m2

It is given that the cost of painting m2 area = Rs. 12

So, the cost of painting 32.028 m2 area = Rs(32.028 × 12) = Rs. 384.336

We can also write the cost approximately as Rs. 384.34.

Therefore, the cost of painting all the hollow cones is Rs. 384.34.

Exercise (11.2)

1. Find the surface area of a sphere of radius: [Assume π=227]

(i) 10.5 cm

Ans: Given radius of the sphere r = 10.5 cm

The surface area of the sphere A = 4 π r2

A = [× 227 × (10.5)2] cm2

A = (88 × 1.5 × 1.5) cm2

A = 1386 cm2

Hence, the surface area of the sphere is 1386 cm2.

(ii) 5.6 cm

Ans: Given radius of the sphere r = 5.6 cm

The surface area of the sphere A = 4 π r2

A = [× 227 × (5.6)2] cm2

A = (88 × 0.8 × 5.6) cm2

A = 394.24 cm2

Hence, the surface area of the sphere is 394.24 cm2.

(iii) 14 cm [Assume π=227]

Ans: Given radius of the sphere r = 14 cm

The surface area of the sphere A = 4 π r2

A = [× 227 × (14)2] cm2

A = (× 44 × 14) cm2

A = 2464 cm2

Hence, the surface area of the sphere is 2464 cm2.

2. Find the surface area of a sphere of diameter: [Assume π=227]:

(i) 14 cm

Ans: Given diameter of the sphere = 14 cm

So, the radius of the sphere r = 142 = 7 cm

The surface area of the sphere A = 4 π r2

A = [× 227 × (7)2] cm2

A = (88 × 7) cm2

A = 616 cm2

Hence, the surface area of the sphere is 616 cm2.

(ii) 21 cm

Ans: Given diameter of the sphere = 21 cm

So, the radius of the sphere r = 212 = 10.5 cm

The surface area of the sphere A = 4 π r2

A = [× 227 × (10.5)2] cm2

A = 1386 cm2

Hence, the surface area of the sphere is 1386 cm2.

(iii) 3.5 m [Assume π=227]

Ans: Given diameter of the sphere = 3.5 m

So, the radius of the sphere r = 3.52 = 1.75 m

The surface area of the sphere A = 4 π r2

A = [× 227 × (1.75)2] m2

A = 38.5 m2

Hence, the surface area of the sphere is 38.5 m2.

3. Find the total surface area of a hemisphere of radius 10 cm. [Use π = 3.14]

Ans:


the radius of hemisphere


Given the radius of hemisphere r = 10 cm

The total surface area of the hemisphere is the sum of its curved surface area and the circular base.

Total surface area of hemisphere A = 2 π r2 + π r2

A = 3 π r2

A = [× 3.14 × (10)2] cm2

A = 942 cm2

Hence, the total surface area of the hemisphere is 942 cm2.

4. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.

Ans: Given the initial radius of the balloon r1 = 10 cm

The final radius of the balloon r2 = 14 cm

We have to find the ratio of surface areas of the balloon in the two cases.

The required ratio R = π r12π r22

R = (r1r2)2

R = (714)2

R = 14

Hence, the ratio of the surface areas of the balloon in both case is 1 : 4.

5. A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tinplating it on the inside at the rate of Rs. 16 per 100 cm2. [Assume π=227]

Ans: Given the radius of inner hemispherical bowl r = 10.52 = 5.25 cm


The surface area of the hemispherical bowl


The surface area of the hemispherical bowl A = 2 π r2

A = [× 227 × (5.25)2] cm2

A = 173.25 cm2

It is given that the cost of tin-plating 100 cm2 area = Rs. 16

So, the cost of tin-plating 173.25 cm2 area = Rs(16100 × 173.25) = Rs. 27.72

Hence, the cost of tin-plating the hemispherical bowl is Rs. 27.72.

6. Find the radius of a sphere whose surface area is 154 cm2. [Assume π=227]

Ans: Let us assume the radius of sphere be r.

We are given the surface area of the sphere, A = 154 cm2.

π r2 = 154 cm2

r2 = (154 × 7× 22) cm2

r = (72) cm

r = 3.5 cm

Therefore, the radius of the sphere is 3.5 cm.

7. The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface area.

Ans: Let us assume the diameter of earth is d.

So, the diameter of the moon will be d4.

The radius of the earth r1 = d2

The radius of the moon r2 = 12 × d2 = d8

The ratio of surface area of moon and earth R = π r22π r12

R = π (d8)2π (d2)2

R = 464

R = 116

Therefore, the ratio of surface area of moon and earth is 1 : 16.

8. A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl. [Assume π=227]

Ans: Given the inner radius = 5 cm

The thickness of the bowl = 0.25 cm


The thickness of the bowl


So, the outer radius of the hemispherical bowl is r = (5 + 0.25) cm = 5.25 cm

The outer curved surface area of the hemispherical bowl A = 2 π r2

A =[ 2 × 27 × (5.25)2] cm2

A = 173.25 cm2

Therefore, the outer curved surface area of the hemispherical bowl is 173.25 cm2.

9. A right circular cylinder just encloses a sphere of radius r (see figure). Find 


A right circular cylinder just encloses a sphere of radius


(i) surface area of the sphere, 

Ans: The surface area of the sphere is π r2.

(ii) curved surface area of the cylinder, 

Ans:


curved surface area of the cylinder


Given the radius of cylinder = r

The height of cylinder = r + r = 2r

The curved surface area of cylinder A = 2 π rh

A = 2 π r (2r)

A = 4 π r2

Therefore the curved surface area of cylinder is  π r2.

(iii) ratio of the areas obtained in (i) and (ii).

Ans: The ratio of surface area of the sphere and curved surface area of cylinder  R = π r2π r2

R = 11

Therefore, the required ratio is 1 : 1.


Exercise (11.3)

1. Find the volume of the right circular cone with

(i) Radius 6 cm, height 7 cm [Assume π =227]

Ans: It is given the radius of cone r = 6 cm

The height of the cone h = 7 cm

The volume of the cone V = 13 π r2h

V = [13 × 227 × (6)2 × 7] cm3

V = (12 × 22) cm3

V = 264 cm3

The volume of the right circular cone is 264 cm3.

(ii) Radius 3.5 cm, height 12 cm [Assume π =227]

Ans: It is given the radius of cone r = 3.5 cm

The height of the cone h = 12 cm

The volume of the cone V = 13 π r2h

V = [13 × 227 × (3.5)2 × 12] cm3

V = (1.75 × 88) cm3

V = 154 cm3

The volume of the right circular cone is 154 cm3.

2. [Assume π =227] Find the capacity in litres of a conical vessel with

(i) Radius 7 cm, slant height 25 cm

Ans: It is given the radius of cone r = 7 cm

The slant height of the cone l = 25 cm


The slant height of the cone


So, the height of the cone h = l2 - r2

h = 252 - 72 cm

h = 24 cm

The volume of the cone V = 13 π r2h

V = [13 × 227 × (7)2 × 24] cm3

V = (154 × 8) cm3

V = 1232 cm3

We know that 1000 cm3 = 1 litre

So, the capacity of the conical vessel 12321000 = 1.232 litres

Therefore, the capacity of the conical vessel is 1.232 litres.

(ii) height 12 cm, slant height 13 cm [Assume π =227]

Ans: It is given the height of cone h = 12 cm

The slant height of the cone l = 13 cm


the radius of the cone


So, the radius of the cone r = l2 - h2

r = 132 - 122 cm

r = 5 cm

The volume of the cone V = 13 π r2h

V = [13 × 227 × (5)2 × 12] cm3

V = (× 227 × 25) cm3

V = 22007 cm3

We know that 1000 cm3 = 1 litre

So, the capacity of the conical vessel 22007 × 11000 = 0.314 litres

Therefore, the capacity of the conical vessel is 0.314 litres.

3. The height of a cone is 15 cm. It its volume is 1570 cm3, find the diameter of its base. [Use π = 3.14]

Ans: It is given the height of cone h = 12 cm

Let us assume the radius of the cone be r.


The volume of the cone is


The volume of the cone is V = 1570 cm3

We know the formula for the volume of the cone 13 π r2h

13 π r2h = 1570 cm3

[13 × 227 × (r)2 × 12] cm = 1570 cm3

r2 = 100 cm2

r = 10 cm

Diameter of base = 2r = 20 cm

Therefore, the diameter of the cone is  20 cm.

4. If the volume of right circular cone of height 9 cm is 48 π cm3, find the diameter of its base.

Ans: It is given the height of cone h = 9 cm

Let us assume the radius of the cone be r.


the formula for the volume of the cone


The volume of the cone is V = 48 π cm3

We know the formula for the volume of the cone 13 π r2h

13 π r2h = 48 π cm3

[13 × π × (r)2 × 9] cm = 48 π cm3

r2 = 16 cm2

r = 4 cm

Diameter of base = 2r = 8 cm

Therefore, the diameter of the base of the cone is 8 cm.

5. A conical pit of top diameter 3.5 m is 12 m deep. What is the capacity in kilolitres? [Assume π =227]

Ans: It is given the height of conical pit h = 12 m

The radius of conical pit r = 3.52 m = 1.75 m


the volume of the conical pit


We know the volume of the conical pit V = 13 π r2h

V = [13 × 227 × (1.75)2 × 12] m3

V = 38.5 m3

We know that 1 kilolitre = 1 m3

So, the capacity of the pit (38.5 × 1) kilolitres = 38.5 kilolitres

Therefore, the capacity of the conical pit is 38.5 kilolitres.

6. The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find

(i) Height of the cone

Ans: It is given the diameter of base of cone = 28 cm

So, the radius r = 282 = 14 cm

Let us assume the height of the cone be h.


The volume of the cone is


The volume of the cone is V = 9856 cm3

We know the formula for the volume of the cone 13 π r2h

13 π r2h = 9856 cm3

[13 × 227 × (14)2 × h] cm2 = 9856 cm3

h = (9856 × 2122 × 196) cm

h = 48 cm

Therefore, the height of the cone is 48 cm.

(ii) Slant height of the cone

Ans: The slant height of the cone l = h2 + r2

l = 482 + 142 cm

l = 2304 + 196 cm

l = 50 cm

Therefore, the slant height of the cone is 50 cm.

(iii) Curved surface area of the cone. [Assume π =227]

Ans: The curved surface area of the cone A = π rl

A = (227 × 14 × 50) cm2

A = 2200 cm2

Therefore, the curved surface area of the cone is 2200 cm2.

7. A right triangle  Δ ABC with sides 5 cm,12 cm and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.

Ans: We will draw the given figure.


the triangle is revolved about the side


If the triangle is revolved about the side 12 cm, we will get a cone with:

Radius r = 5 cm

Slant height l = 13 cm

Height h = 12 cm

We know the volume of the cone V = 13 π r2h

V = [13 × π × (5)2 × 12] cm3

V = 100 π cm3

Therefore, the volume of the cone will be 100 π cm3.

8. If the triangle  Δ ABC in the Question 7 above is revolved about the side 5 cm, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.

Ans:


the triangle is revolved about the side


If the triangle is revolved about the side 5 cm, we will get a cone with:

Radius r = 12 cm

Slant height l = 13 cm

Height h = 5 cm

We know the volume of the cone V = 13 π r2h

V = [13 × π × (12)2 × 5] cm3

V = 240 π cm3

Therefore, the volume of the cone will be 240 π cm3.

The ratio of volume of cone from previous question an the one we obtained above 100 π 240 π  = 512 = 5 : 12

Therefore, the required ratio is 5 : 12.

9. A heap of wheat is in the form of a cone whose diameter is 10.5 mand height is 3 m. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.

[Assume π =227]

Ans: It is given that diameter of the heap = 10.5 m

So, the radius of heap r = 10.52 = 5.25 m

Height of heap h = 3 m


the volume of the cone


We know the volume of the cone V = 13 π r2h

V = [13 × 227 × (5.25)2 × 3] m3

V = 86.625 m3

Hence, the volume of heap is 86.625 m3.

The area of canvas required is same as curved surface area of the cone.

A = π rl

A = π rh2 + r2

A = 227 × 5.25 × (3)2 + (5.25)2 m2

A = (227 × 5.25 × 6.05) m2

A = 99.825 m2

Therefore, to protect the heap from the rain, the amount of canvas required is 99.825 m2.

Exercise (11.4)

1. [Assume π =227] Find the volume of the sphere whose radius is

(i) 7 cm

Ans: It is given the radius of sphere r = 7 cm

The volume of the sphere V = 43 π r3

V =[ 43 × 227 × (7)3] cm3

V = 43123 cm3

V = 1437.33 cm3

Therefore, the volume of the sphere is 1437.33 cm3.

(ii) 0.63 m [Assume π =227]

Ans: It is given the radius of sphere r = 0.63 m

The volume of the sphere V = 43 π r3

V =[ 43 × 227 × (0.63)3] m3

V = 1.0478 m3

Therefore, the volume of the sphere is 1.0478 m3.

2. [Assume π =227] Find the amount of water displaced by a solid spherical ball of diameter

(i) 28 cm

Ans: It is given the diameter of ball = 28 cm

So, the radius of ball r = 282 = 14 cm

The volume of the ball V = 43 π r3

V =[ 43 × 227 × (14)3] cm3

V = 11498 cm3

Therefore, volume of the sphere is 11498 cm3.

(ii) 0.21 m [Assume π =227]

Ans: It is given the diameter of ball = 0.21 m

So, the radius of ball r = 0.212 = 0.105 m

The volume of the sphere V = 43 π r3

V =[ 43 × 227 × (0.105)3] m3

V = 0.004851 m3

Therefore, the volume of the sphere is 0.004851 m3.

3. The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm3? [Assume π =227]

Ans: It is given the diameter of metallic ball = 4.2 cm


the diameter of metallic ball


So, the radius of ball r = 4.22 = 2.1 cm

The volume of the sphere V = 43 π r3

V =[ 43 × 227 × (2.1)3] cm3

V = 38.808 cm3

We know that Density = MassVolume

Mass = Density × Volume

Mass = (8.9 × 38.808) g

Mass = 345.39 g

Therefore, the mass of the metallic ball is 345.39 g.

4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?

Ans: Let us assume the diameter of earth be d.

So, the radius of earth will be R = d2.

From the question, we can write the diameter of the moon as d4.

So, the radius of moon will be r = d8.

The volume of earth V = 43 π R3

V = 43 π (d2)3

V = 18 × 43 π d3

The volume of moon {V}' = 43 π r3

{V}' = 43 π (d8)3

{V}' = 1512 × 43 π d3

The ratio of volume of moon and that of earth 1512 × 43 π d318 × 43 π d3 = 164

So, Volume of moonVolume of earth=164

Volume of moon = (164) Volume of earth

Therefore, the volume of moon is 164 times the volume of earth.

5. How many litres of milk can a hemispherical bowl of diameter 10.5 cm can hold? [Assume π =227]

Ans: It is given the diameter of the hemispherical bowl = 10.5 cm.


the diameter of the hemispherical bowl


So, the radius of the bowl r = 10.52 = 5.25 cm.

The volume of the hemispherical bowl V = 23 π r3

V =[ 23 × 227 × (5.25)3] cm3

V = 303.1875 cm3

We know that 1000 cm3 = 1 litre

So, the capacity of the bowl 303.18751000 = 0.303 litre

Therefore, the volume of the hemispherical bowl is 0.303 litre.

6. A hemispherical tank is made up of an iron sheet 1 cmthick. If the inner radius is 1 m, then find the volume of the iron used to make the tank. [Assume π =227]

Ans: The inner radius of hemispherical tank r = 1 m

The thickness of iron sheet = 1 cm = 0.01 m.


the outer radius of the hemispherical tank


So, the outer radius of the hemispherical tank R = (1 + 0.01) = 1.01 m

The volume of iron sheet required to make the tank V = 23 π (R3 - r3)

V = 23×227×((1.01)3 - (1)3) m3

V = 4421 × (1.030301 - 1) m3

V = 0.06348 m3

Therefore, the volume of iron sheet required to make the hemispherical tank is 0.06348 m3.

7. Find the volume of a sphere whose surface area is 154 cm2. [Assume π =227]

Ans: Let us assume the radius of the sphere be r.

It is given the surface area of the sphere = 154 cm2.

π r2 = 154 cm2

r2 = (154 × 7× 22) cm2

r2 = (494) cm2

r = (72) cm

The volume of the sphere V = 43 π r3

V = [43  ×  227  ×  (72)3] cm3

V = [49  ×  113] cm3

V = 179.67 cm3

Therefore, the volume of the sphere is 179.67 cm3.

8. A dome of a building is in the form of a hemisphere. From inside, it was whitewashed at the cost of Rs. 498.96. If the cost of white-washing is Rs. 2.00per square meter, find the

(i) Inside surface area of the dome,

Ans: It is given that it costs Rs. 2.00 to whitewash an area = 1 m2

So, it costs Rs. 498.96 to whitewash an area 498.962 m2 = 249.48 m2.

Therefore, the inner surface area of the dome is 249.48 m2.

(ii) Volume of the air inside the dome. [Assume π =227]

Ans: Let us assume the radius of the hemispherical dome be r.

We obtained the curved surface area of the inner dome = 249.48 m2

2 π 2 = 249.48 m2

× 227 × r2 = 249.48 m2

r2 = (249.48 × 7× 22) m2

r2 = 39.69 m2

r = 6.3 m

Volume of hemispherical dome V = 23 π r3

V = [23 × 227 × (6.3)3] m3

V = 523.908 m3

V = 523.9 m3(approximately)

Therefore, the volume of air inside the hemispherical dome is 523.9 m3.

9. Twenty-seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area {S}'. Find the 

(i) radius {r}' of the new sphere, 

Ans: It is given the radius of one iron sphere = r.

The volume of one iron sphere 43 π r3

So, the volume of 27 iron spheres = 27 × 43 π r3

These spheres are melted to form one big sphere.

Let us assume the radius of this new sphere be {r}'.

The volume of new iron sphere 43 π {r}'3

We can now equate the volumes.

43 π {r}'3 = 27 × 43 π r3

{r}'3 = 27r3

{r}' = 3r

Therefore, the radius of the new sphere is 3r.

(ii) ratio of S and {S}'

Ans: The surface area of an iron sphere of ris S = 4 π r2.

The surface area of an iron sphere of {r}'is {S}' = 4 π {r}'2.

{S}' = 4 π (3r)2

{S}' = 36 π r2

The ratio of S{S}' = π r236 π r2 = 19 = 1 : 9

Therefore, the required ratio is 1 : 9.

10. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm. How much medicine (in mm3) is needed to fill this capsule? [Assume π =227]

Ans: It is given that the diameter of the capsule = 3.5 mm.

So, the radius will be r = (3.52) = 1.75 mm.


Volume of spherical capsule


Volume of spherical capsule V = 43 π r3

V = [43 × 227 × (1.75)3] mm3

V = 22.458 mm3

V = 22.46 mm3(approx)

Hence, the amount of medicine required to fill the capsule is 22.46 mm3.


Overview of Deleted Syllabus for CBSE Class 9 Maths Chapter 11

Chapter

Dropped Topics

Surface Area and Volumes

11.2 Surface area of a cuboid and cube

11.3 Surface area of right circular cylinder,

11.6 Volume of cuboid 

11.7 Volume of cylinder



Surface Area and Volumes Class 9 NCERT Solutions

Chapter 11 Surface Area and Volume All Exercises in PDF Format

Exercise 11.1

8 Questions & Solutions

Exercise 11.2

9 Questions & Solutions

Exercise 11.3

9 Questions & Solutions

Exercise 11.4

10 Questions & Solutions



Conclusion

The NCERT Solutions for Maths class 9 Surface Area and Volume Chapter 11, provided by Vedantu, comprehensively cover Surface Area and Volume, essential for understanding 3D geometry. Focus on key concepts like the formulas for the surface area and volume of various shapes, including cylinders, cones, and spheres. Practice is crucial, so work through all exercises diligently. Vedantu highlights that previous year question papers often feature 6–8 questions from this chapter, making it a significant component for exam preparation. Mastery of these topics will aid in solving complex problems efficiently and boost overall performance in the exam.


Other Study Materials of CBSE Class 9 Maths Chapter 11



NCERT Solutions for Class 9 Maths - Chapter-wise List

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths

WhatsApp Banner

FAQs on NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume

1. The length, height and breadth of a room are 5 m, 3 m and 4m respectively. Find the cost of whitewashing the walls of the room and ceiling at the rate of Rs 7.50 per m2.

From the given data, we have, 

  • Length (l) of room = 5m

  • Breadth (b) of room = 4m

  • Height (h) of room = 3m

We can notice that the four walls and the ceiling of the room are to be whitewashed.

So we can write as,

Total area to be whitewashed = Area of walls + Area of the ceiling of the room

= 2lh+2bh+lb

= [2×5×3+2×4×3+5×4]

= (30+24+20)

= 74

Therefore, Area = 74 m2

Also, it is given that,

Cost of whitewash per m2 area = Rs.7.50

Cost of whitewashing 74 m2 area = Rs. (74×7.50)

= Rs. 555 is the cost obtained.

2. It is necessary to make a closed cylindrical tank of height 1m and base diameter 140cm from a metal sheet. How many square meters of the sheet is required for the same? Assume π = 22/7

Let us assume that h be the height and r be the radius of a cylindrical tank.

Height of cylindrical tank, h = 1m

As we already know that,

Radius = half of diameter = (140/2) cm = 70cm = 0.7m

Therefore, r = 0.7m

So we can write,

Area of sheet required = Total surface area of tank = 2πr(r+h) unit square

= [2×(22/7)×0.7(0.7+1)]

= 7.48

Hence the total area of sheet required is 7.48m2

3. Why should we follow NCERT Solutions for Class 9 Maths Chapter 13?

NCERT Solutions for Class 9 Maths Chapter 13 are useful since they cover virtually all of the topics covered in board exams. These Solutions are prepared by subject matter experts with extensive expertise. As a result, they are accurate and dependable. The Solutions section contains the solutions to all of the problems from Chapter 13. As a result, students should consult them for guidance on how to write responses in exams. NCERT books are used to answer questions in the examinations, either directly or indirectly.

4. What are the topics covered under NCERT Solutions for Class 9 Maths Chapter 13?

The PDF of Class 9 Maths Surface Areas and Volumes refreshes students' understanding in this section. The plane and solid forms, as well as a brief explanation, are also discussed here. The students in Class 9 are asked to pay close attention to the shapes of different solids. It includes many formulas to determine surface areas and volumes of different shapes which is useful for the practical world.

5. Will I be wrong to say that the 9th Standard is easy?

Class 9 may feel like a breeze for some students, whereas it may be challenging for some. Every child has its own capabilities and perceives the difficulty level of a class from their own perspective. Class 9 introduces you to a lot of new subjects and concepts. Students should not feel overwhelmed by this. They should study regularly and plan everything to overcome stress. You can also take help from Vedantu app or Vedantu website for free of cost.

6. What is the best Solutions book for NCERT for Class 9 Chapter 13?

Many formulas and ideas are included in the Vedantu Solutions book. NCERT includes a few questions for students to answer. Vedantu provides the finest answers to all of these problems. When you're stuck on a difficult question, the NCERT Solutions for Class 9 Maths Chapter 13 will come in handy. We make certain that each question is answered correctly. Chapter 13 requires constant attention on formulas and asks for revision which is available on our site. 

7. How can you help with Chapter 13 of Class 9 Maths?

Students can profit from the NCERT Solutions for Class 9 Maths Surface Areas and Volumes in a variety of ways. On the Vedantu website, NCERT Solutions for Class 9 Chapter 13 are accessible in PDF format. This will not only assist you in comprehending the test pattern but will also provide you with an in-depth explanation of the topics.