${{10}^{-6}}$ M NaOH is diluted by 100 times. The pH of diluted base is?
(A)- Between 6 & 7
(B)- Between 10 & 11
(C)- Between 7 & 8
(D)- Between 5 & 6
Answer
Verified
476.1k+ views
Hint: pH of a solution is calculated from the concentration of ${{H}^{+}}$ ions in the solution and is given as $pH=-\log \left[ {{H}^{+}} \right]$.
Similarly, pOH measures $O{{H}^{-}}$ ion concentration in a solution, i.e. $pOH=-\log \left[ O{{H}^{-}} \right]$.
Relationship between pH and pOH, based on the equilibrium concentrations of ${{H}^{+}}$ and $O{{H}^{-}}$ is
\[pH+pOH=14\]
Complete answer:
Let us solve the given question step by step.
Given, molar concentration of NaOH base = ${{10}^{-6}}$ M
NaOH being a strong base dissociates completely in water into $N{{a}^{+}}$ and $O{{H}^{-}}$ ions
$NaOH(aq)\to N{{a}^{+}}(aq)+O{{H}^{-}}(aq)$
Since, one mole of NaOH is equal to one of $N{{a}^{+}}$ and $O{{H}^{-}}$. Thus, we can draw the following conclusion
\[\left[ NaOH \right]=\left[ N{{a}^{+}} \right]=\left[ O{{H}^{-}} \right]={{10}^{-6}}M\]
It is given that the base has been diluted by 100 times. So, the concentration of $\left[ O{{H}^{-}} \right]$now becomes ${{10}^{-8}}M$, i.e.
\[\dfrac{{{10}^{-6}}M}{100}={{10}^{-8}}M\]
To find the total concentration of $O{{H}^{-}}$ ions, i.e. $\left[ O{{H}^{-}} \right]={{10}^{-8}}M+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$, we need to consider the concentration of $O{{H}^{-}}$ from water.
We know that water ionizes as
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
One mole of water gives one mole of ${{H}^{+}}$ and $O{{H}^{-}}$,thus, we have
\[\left[ {{H}^{+}} \right]=\left[ O{{H}^{-}} \right]\]
Ionic product of water, which is the product of concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ ions, at 25$^{o}C$ is ${{10}^{-14}}$. Since \[\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]={{10}^{-14}}\], we can write that the concentration of $O{{H}^{-}}$ from ionization of water, ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}={{10}^{-7}}M$.
Therefore, total $\left[ O{{H}^{-}} \right]$ ions after substituting the value of ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$ will be
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}} \\
\end{align}$
Multiplying and diving ${{10}^{-7}}$ by 10 in the above equation, we get
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}}\times \frac{10}{10} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-8}}\times 10 \\
\end{align}$
Taking ${{10}^{-8}}$ common in the equation for simplification, we obtain
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}(1+10) \\
& \left[ O{{H}^{-}} \right]=11\times {{10}^{-8}} \\
\end{align}$
Now we have the total concentration of $O{{H}^{-}}$, i.e. $\left[ O{{H}^{-}} \right]=11\times {{10}^{-8}}M$, we can find pOH as
$\begin{align}
& pOH=-\log \left[ O{{H}^{-}} \right] \\
& pOH=-\log \left[ 11\times {{10}^{-8}} \right] \\
\end{align}$
Applying $\log (mn)=\log m+\log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& pOH=-(\log 11+\log {{10}^{-8}}) \\
& pOH=-(\log 11-8\log 10) \\
\end{align}\]
We know that ${{\log }_{10}}10=1$, on substituting it, the above equation becomes
\[\begin{align}
& pOH=-(\log 11-8) \\
& pOH=-1.0414+8 \\
& pOH=6.9586\approx 6.96 \\
\end{align}\]
To find the pH from pOH, we have the relation that is true for solution at 25$^{o}C$. Putting the value of pOH = 6.96, we have the pH of the solution
\[\begin{align}
& pH+pOH=14 \\
& pH=14-pOH \\
& pH=14-6.96 \\
& pH=7.04 \\
\end{align}\]
Therefore, the pH of diluted base is 7.04, which lies within 7 to 8.
So, the correct answer is “Option C”.
Note: Note that concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ is important for dilute solutions. We cannot ignore the concentration of $O{{H}^{-}}$ due to water in this case, as the solution has become very dilute due to the addition of water. Due to the decrease in the number of $O{{H}^{-}}$ (and ${{H}^{+}}$) ions per unit volume, the pH of the basic solution has been reduced.
Similarly, pOH measures $O{{H}^{-}}$ ion concentration in a solution, i.e. $pOH=-\log \left[ O{{H}^{-}} \right]$.
Relationship between pH and pOH, based on the equilibrium concentrations of ${{H}^{+}}$ and $O{{H}^{-}}$ is
\[pH+pOH=14\]
Complete answer:
Let us solve the given question step by step.
Given, molar concentration of NaOH base = ${{10}^{-6}}$ M
NaOH being a strong base dissociates completely in water into $N{{a}^{+}}$ and $O{{H}^{-}}$ ions
$NaOH(aq)\to N{{a}^{+}}(aq)+O{{H}^{-}}(aq)$
Since, one mole of NaOH is equal to one of $N{{a}^{+}}$ and $O{{H}^{-}}$. Thus, we can draw the following conclusion
\[\left[ NaOH \right]=\left[ N{{a}^{+}} \right]=\left[ O{{H}^{-}} \right]={{10}^{-6}}M\]
It is given that the base has been diluted by 100 times. So, the concentration of $\left[ O{{H}^{-}} \right]$now becomes ${{10}^{-8}}M$, i.e.
\[\dfrac{{{10}^{-6}}M}{100}={{10}^{-8}}M\]
To find the total concentration of $O{{H}^{-}}$ ions, i.e. $\left[ O{{H}^{-}} \right]={{10}^{-8}}M+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$, we need to consider the concentration of $O{{H}^{-}}$ from water.
We know that water ionizes as
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
One mole of water gives one mole of ${{H}^{+}}$ and $O{{H}^{-}}$,thus, we have
\[\left[ {{H}^{+}} \right]=\left[ O{{H}^{-}} \right]\]
Ionic product of water, which is the product of concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ ions, at 25$^{o}C$ is ${{10}^{-14}}$. Since \[\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]={{10}^{-14}}\], we can write that the concentration of $O{{H}^{-}}$ from ionization of water, ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}={{10}^{-7}}M$.
Therefore, total $\left[ O{{H}^{-}} \right]$ ions after substituting the value of ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$ will be
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}} \\
\end{align}$
Multiplying and diving ${{10}^{-7}}$ by 10 in the above equation, we get
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}}\times \frac{10}{10} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-8}}\times 10 \\
\end{align}$
Taking ${{10}^{-8}}$ common in the equation for simplification, we obtain
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}(1+10) \\
& \left[ O{{H}^{-}} \right]=11\times {{10}^{-8}} \\
\end{align}$
Now we have the total concentration of $O{{H}^{-}}$, i.e. $\left[ O{{H}^{-}} \right]=11\times {{10}^{-8}}M$, we can find pOH as
$\begin{align}
& pOH=-\log \left[ O{{H}^{-}} \right] \\
& pOH=-\log \left[ 11\times {{10}^{-8}} \right] \\
\end{align}$
Applying $\log (mn)=\log m+\log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& pOH=-(\log 11+\log {{10}^{-8}}) \\
& pOH=-(\log 11-8\log 10) \\
\end{align}\]
We know that ${{\log }_{10}}10=1$, on substituting it, the above equation becomes
\[\begin{align}
& pOH=-(\log 11-8) \\
& pOH=-1.0414+8 \\
& pOH=6.9586\approx 6.96 \\
\end{align}\]
To find the pH from pOH, we have the relation that is true for solution at 25$^{o}C$. Putting the value of pOH = 6.96, we have the pH of the solution
\[\begin{align}
& pH+pOH=14 \\
& pH=14-pOH \\
& pH=14-6.96 \\
& pH=7.04 \\
\end{align}\]
Therefore, the pH of diluted base is 7.04, which lies within 7 to 8.
So, the correct answer is “Option C”.
Note: Note that concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ is important for dilute solutions. We cannot ignore the concentration of $O{{H}^{-}}$ due to water in this case, as the solution has become very dilute due to the addition of water. Due to the decrease in the number of $O{{H}^{-}}$ (and ${{H}^{+}}$) ions per unit volume, the pH of the basic solution has been reduced.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE