
${{10}^{-6}}$ M NaOH is diluted by 100 times. The pH of diluted base is?
(A)- Between 6 & 7
(B)- Between 10 & 11
(C)- Between 7 & 8
(D)- Between 5 & 6
Answer
592.8k+ views
Hint: pH of a solution is calculated from the concentration of ${{H}^{+}}$ ions in the solution and is given as $pH=-\log \left[ {{H}^{+}} \right]$.
Similarly, pOH measures $O{{H}^{-}}$ ion concentration in a solution, i.e. $pOH=-\log \left[ O{{H}^{-}} \right]$.
Relationship between pH and pOH, based on the equilibrium concentrations of ${{H}^{+}}$ and $O{{H}^{-}}$ is
\[pH+pOH=14\]
Complete answer:
Let us solve the given question step by step.
Given, molar concentration of NaOH base = ${{10}^{-6}}$ M
NaOH being a strong base dissociates completely in water into $N{{a}^{+}}$ and $O{{H}^{-}}$ ions
$NaOH(aq)\to N{{a}^{+}}(aq)+O{{H}^{-}}(aq)$
Since, one mole of NaOH is equal to one of $N{{a}^{+}}$ and $O{{H}^{-}}$. Thus, we can draw the following conclusion
\[\left[ NaOH \right]=\left[ N{{a}^{+}} \right]=\left[ O{{H}^{-}} \right]={{10}^{-6}}M\]
It is given that the base has been diluted by 100 times. So, the concentration of $\left[ O{{H}^{-}} \right]$now becomes ${{10}^{-8}}M$, i.e.
\[\dfrac{{{10}^{-6}}M}{100}={{10}^{-8}}M\]
To find the total concentration of $O{{H}^{-}}$ ions, i.e. $\left[ O{{H}^{-}} \right]={{10}^{-8}}M+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$, we need to consider the concentration of $O{{H}^{-}}$ from water.
We know that water ionizes as
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
One mole of water gives one mole of ${{H}^{+}}$ and $O{{H}^{-}}$,thus, we have
\[\left[ {{H}^{+}} \right]=\left[ O{{H}^{-}} \right]\]
Ionic product of water, which is the product of concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ ions, at 25$^{o}C$ is ${{10}^{-14}}$. Since \[\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]={{10}^{-14}}\], we can write that the concentration of $O{{H}^{-}}$ from ionization of water, ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}={{10}^{-7}}M$.
Therefore, total $\left[ O{{H}^{-}} \right]$ ions after substituting the value of ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$ will be
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}} \\
\end{align}$
Multiplying and diving ${{10}^{-7}}$ by 10 in the above equation, we get
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}}\times \frac{10}{10} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-8}}\times 10 \\
\end{align}$
Taking ${{10}^{-8}}$ common in the equation for simplification, we obtain
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}(1+10) \\
& \left[ O{{H}^{-}} \right]=11\times {{10}^{-8}} \\
\end{align}$
Now we have the total concentration of $O{{H}^{-}}$, i.e. $\left[ O{{H}^{-}} \right]=11\times {{10}^{-8}}M$, we can find pOH as
$\begin{align}
& pOH=-\log \left[ O{{H}^{-}} \right] \\
& pOH=-\log \left[ 11\times {{10}^{-8}} \right] \\
\end{align}$
Applying $\log (mn)=\log m+\log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& pOH=-(\log 11+\log {{10}^{-8}}) \\
& pOH=-(\log 11-8\log 10) \\
\end{align}\]
We know that ${{\log }_{10}}10=1$, on substituting it, the above equation becomes
\[\begin{align}
& pOH=-(\log 11-8) \\
& pOH=-1.0414+8 \\
& pOH=6.9586\approx 6.96 \\
\end{align}\]
To find the pH from pOH, we have the relation that is true for solution at 25$^{o}C$. Putting the value of pOH = 6.96, we have the pH of the solution
\[\begin{align}
& pH+pOH=14 \\
& pH=14-pOH \\
& pH=14-6.96 \\
& pH=7.04 \\
\end{align}\]
Therefore, the pH of diluted base is 7.04, which lies within 7 to 8.
So, the correct answer is “Option C”.
Note: Note that concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ is important for dilute solutions. We cannot ignore the concentration of $O{{H}^{-}}$ due to water in this case, as the solution has become very dilute due to the addition of water. Due to the decrease in the number of $O{{H}^{-}}$ (and ${{H}^{+}}$) ions per unit volume, the pH of the basic solution has been reduced.
Similarly, pOH measures $O{{H}^{-}}$ ion concentration in a solution, i.e. $pOH=-\log \left[ O{{H}^{-}} \right]$.
Relationship between pH and pOH, based on the equilibrium concentrations of ${{H}^{+}}$ and $O{{H}^{-}}$ is
\[pH+pOH=14\]
Complete answer:
Let us solve the given question step by step.
Given, molar concentration of NaOH base = ${{10}^{-6}}$ M
NaOH being a strong base dissociates completely in water into $N{{a}^{+}}$ and $O{{H}^{-}}$ ions
$NaOH(aq)\to N{{a}^{+}}(aq)+O{{H}^{-}}(aq)$
Since, one mole of NaOH is equal to one of $N{{a}^{+}}$ and $O{{H}^{-}}$. Thus, we can draw the following conclusion
\[\left[ NaOH \right]=\left[ N{{a}^{+}} \right]=\left[ O{{H}^{-}} \right]={{10}^{-6}}M\]
It is given that the base has been diluted by 100 times. So, the concentration of $\left[ O{{H}^{-}} \right]$now becomes ${{10}^{-8}}M$, i.e.
\[\dfrac{{{10}^{-6}}M}{100}={{10}^{-8}}M\]
To find the total concentration of $O{{H}^{-}}$ ions, i.e. $\left[ O{{H}^{-}} \right]={{10}^{-8}}M+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$, we need to consider the concentration of $O{{H}^{-}}$ from water.
We know that water ionizes as
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
One mole of water gives one mole of ${{H}^{+}}$ and $O{{H}^{-}}$,thus, we have
\[\left[ {{H}^{+}} \right]=\left[ O{{H}^{-}} \right]\]
Ionic product of water, which is the product of concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ ions, at 25$^{o}C$ is ${{10}^{-14}}$. Since \[\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]={{10}^{-14}}\], we can write that the concentration of $O{{H}^{-}}$ from ionization of water, ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}={{10}^{-7}}M$.
Therefore, total $\left[ O{{H}^{-}} \right]$ ions after substituting the value of ${{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}}$ will be
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{\left[ O{{H}^{-}} \right]}_{{{H}_{2}}O}} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}} \\
\end{align}$
Multiplying and diving ${{10}^{-7}}$ by 10 in the above equation, we get
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-7}}\times \frac{10}{10} \\
& \left[ O{{H}^{-}} \right]={{10}^{-8}}+{{10}^{-8}}\times 10 \\
\end{align}$
Taking ${{10}^{-8}}$ common in the equation for simplification, we obtain
$\begin{align}
& \left[ O{{H}^{-}} \right]={{10}^{-8}}(1+10) \\
& \left[ O{{H}^{-}} \right]=11\times {{10}^{-8}} \\
\end{align}$
Now we have the total concentration of $O{{H}^{-}}$, i.e. $\left[ O{{H}^{-}} \right]=11\times {{10}^{-8}}M$, we can find pOH as
$\begin{align}
& pOH=-\log \left[ O{{H}^{-}} \right] \\
& pOH=-\log \left[ 11\times {{10}^{-8}} \right] \\
\end{align}$
Applying $\log (mn)=\log m+\log n$ and $\log {{m}^{n}}=n\log m$, we can simplify the above equation as
\[\begin{align}
& pOH=-(\log 11+\log {{10}^{-8}}) \\
& pOH=-(\log 11-8\log 10) \\
\end{align}\]
We know that ${{\log }_{10}}10=1$, on substituting it, the above equation becomes
\[\begin{align}
& pOH=-(\log 11-8) \\
& pOH=-1.0414+8 \\
& pOH=6.9586\approx 6.96 \\
\end{align}\]
To find the pH from pOH, we have the relation that is true for solution at 25$^{o}C$. Putting the value of pOH = 6.96, we have the pH of the solution
\[\begin{align}
& pH+pOH=14 \\
& pH=14-pOH \\
& pH=14-6.96 \\
& pH=7.04 \\
\end{align}\]
Therefore, the pH of diluted base is 7.04, which lies within 7 to 8.
So, the correct answer is “Option C”.
Note: Note that concentration of ${{H}^{+}}$ and $O{{H}^{-}}$ is important for dilute solutions. We cannot ignore the concentration of $O{{H}^{-}}$ due to water in this case, as the solution has become very dilute due to the addition of water. Due to the decrease in the number of $O{{H}^{-}}$ (and ${{H}^{+}}$) ions per unit volume, the pH of the basic solution has been reduced.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

