
What is 120 degrees Fahrenheit in Celsius?
Answer
514.2k+ views
Hint: We solve this problem using the scale conversions of temperatures. The standard formula for conversion of Fahrenheit to Celsius or Celsius to Fahrenheit is given as,
$\dfrac{C-0}{100-0}=\dfrac{F-32}{212-32}$
Where, $'C'$ is the temperature in Celsius scale and $'F'$ is the temperature in Fahrenheit scale.
By using the above formula and given temperature in a respected scale we can find the temperature in another scale.
Complete step-by-step solution:
We are given that the temperature in the Fahrenheit is 120 degrees.
Let us assume that the given temperature in Fahrenheit scale as,
$\Rightarrow F=120$
We are asked to find the temperature in Celsius scale.
So, let us assume that the required temperature in Celsius scale as $'C'$
We know that the standard formula for conversion of Fahrenheit to Celsius or Celsius to Fahrenheit is given as,
$\dfrac{C-0}{100-0}=\dfrac{F-32}{212-32}$
Where, $'C'$ is the temperature in Celsius scale and $'F'$ is the temperature in Fahrenheit scale.
Now, by using the above formula for the given temperature then we get,
\[\begin{align}
& \Rightarrow \dfrac{C-0}{100-0}=\dfrac{120-32}{212-32} \\
& \Rightarrow \dfrac{C}{100}=\dfrac{88}{180} \\
\end{align}\]
Now, by cross multiplying the terms from LHS to RHS then we get,
$\begin{align}
& \Rightarrow C=\dfrac{88}{180}\times 100 \\
& \Rightarrow C={{48.89}^{\circ }}C \\
\end{align}$
Therefore, we can conclude that the 120 degrees Fahrenheit is equal to 48.89 degrees Celsius that is,
$\therefore {{120}^{\circ }}F={{48.89}^{\circ }}C$
Note: We have the direct steps to find out the required temperature in Celsius scale if the given temperature is in Fahrenheit as follows,
(i) Subtract 32 from the given temperature of Fahrenheit scale.
(ii) Multiply the result in (i) with $\dfrac{5}{9}$
Now, let us use the above steps to find the required answer.
We are given that the temperature in the Fahrenheit is 120 degrees.
Let us assume that the given temperature in Fahrenheit scale as,
$\Rightarrow F=120$
Let us assume the result in step (i) as $'X'$
Now, by applying the first step we get,
$\begin{align}
& \Rightarrow X=120-32 \\
& \Rightarrow X=88 \\
\end{align}$
So, let us assume that the result in step (ii) which is the required temperature in Celsius scale as $'C'$
By applying the second step then we get,
$\begin{align}
& \Rightarrow C=88\times \dfrac{5}{9} \\
& \Rightarrow C=48.89 \\
\end{align}$
Therefore, we can conclude that the 120 degrees Fahrenheit is equal to 48.89 degrees Celsius that is,
$\therefore {{120}^{\circ }}F={{48.89}^{\circ }}C$
$\dfrac{C-0}{100-0}=\dfrac{F-32}{212-32}$
Where, $'C'$ is the temperature in Celsius scale and $'F'$ is the temperature in Fahrenheit scale.
By using the above formula and given temperature in a respected scale we can find the temperature in another scale.
Complete step-by-step solution:
We are given that the temperature in the Fahrenheit is 120 degrees.
Let us assume that the given temperature in Fahrenheit scale as,
$\Rightarrow F=120$
We are asked to find the temperature in Celsius scale.
So, let us assume that the required temperature in Celsius scale as $'C'$
We know that the standard formula for conversion of Fahrenheit to Celsius or Celsius to Fahrenheit is given as,
$\dfrac{C-0}{100-0}=\dfrac{F-32}{212-32}$
Where, $'C'$ is the temperature in Celsius scale and $'F'$ is the temperature in Fahrenheit scale.
Now, by using the above formula for the given temperature then we get,
\[\begin{align}
& \Rightarrow \dfrac{C-0}{100-0}=\dfrac{120-32}{212-32} \\
& \Rightarrow \dfrac{C}{100}=\dfrac{88}{180} \\
\end{align}\]
Now, by cross multiplying the terms from LHS to RHS then we get,
$\begin{align}
& \Rightarrow C=\dfrac{88}{180}\times 100 \\
& \Rightarrow C={{48.89}^{\circ }}C \\
\end{align}$
Therefore, we can conclude that the 120 degrees Fahrenheit is equal to 48.89 degrees Celsius that is,
$\therefore {{120}^{\circ }}F={{48.89}^{\circ }}C$
Note: We have the direct steps to find out the required temperature in Celsius scale if the given temperature is in Fahrenheit as follows,
(i) Subtract 32 from the given temperature of Fahrenheit scale.
(ii) Multiply the result in (i) with $\dfrac{5}{9}$
Now, let us use the above steps to find the required answer.
We are given that the temperature in the Fahrenheit is 120 degrees.
Let us assume that the given temperature in Fahrenheit scale as,
$\Rightarrow F=120$
Let us assume the result in step (i) as $'X'$
Now, by applying the first step we get,
$\begin{align}
& \Rightarrow X=120-32 \\
& \Rightarrow X=88 \\
\end{align}$
So, let us assume that the result in step (ii) which is the required temperature in Celsius scale as $'C'$
By applying the second step then we get,
$\begin{align}
& \Rightarrow C=88\times \dfrac{5}{9} \\
& \Rightarrow C=48.89 \\
\end{align}$
Therefore, we can conclude that the 120 degrees Fahrenheit is equal to 48.89 degrees Celsius that is,
$\therefore {{120}^{\circ }}F={{48.89}^{\circ }}C$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

One lakh eight thousand how can we write it in num class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE


