Answer
Verified
473.4k+ views
Hint: In the question they gave volume, mass of the solution. By that, you can calculate the molarity of the solution. Molarity is defined as the number of moles of solute per liter of solution.
Molarity of solution $ = $ moles of the solute$/$litres of solution
Complete answer: Mass of the solute $ = $$25.3g$
Molar mass of solution $ = $$106gmo{l^{ - 1}}$
Volume of solution $ = $$250mL$
If the solute is dissolved in water then the solute splits into ions. Like that the sodium carbonate dissociates completely then splits into sodium and carbonate ions.
$N{a_2}C{O_3} \to 2N{a^ + } + C{O_3}^ - $
Molar concentration is nothing but molarity of solution
Molarity of solution $ = $ moles of the solute$/$litres of solution
$M = n/v$
Number of moles of solute$ = $$25.3/106 = 0.239moles$
Molarity of solution $ = $$0.239/0.25 = 0.956M$
As sodium carbonate dissociates into two sodium ions, the total molar concentration is calculated for two sodium ions.
Concentration of $N{a^ + } = $ $2 \times 0.956 = 1.912M$
Concentration of $C{O_3}^ - = $$0.956M$
Note:
Concentrate more on balancing the equations and be clear about the molarity, molality, and normality of solutions. Molarity is different from molality so don’t get confused about the terms. The molarity of a solution is related to its molecular weight of the solution and the molality of the solution is related to its equivalent weight of the solution.
Molarity of solution $ = $ moles of the solute$/$litres of solution
Complete answer: Mass of the solute $ = $$25.3g$
Molar mass of solution $ = $$106gmo{l^{ - 1}}$
Volume of solution $ = $$250mL$
If the solute is dissolved in water then the solute splits into ions. Like that the sodium carbonate dissociates completely then splits into sodium and carbonate ions.
$N{a_2}C{O_3} \to 2N{a^ + } + C{O_3}^ - $
Molar concentration is nothing but molarity of solution
Molarity of solution $ = $ moles of the solute$/$litres of solution
$M = n/v$
Number of moles of solute$ = $$25.3/106 = 0.239moles$
Molarity of solution $ = $$0.239/0.25 = 0.956M$
As sodium carbonate dissociates into two sodium ions, the total molar concentration is calculated for two sodium ions.
Concentration of $N{a^ + } = $ $2 \times 0.956 = 1.912M$
Concentration of $C{O_3}^ - = $$0.956M$
Note:
Concentrate more on balancing the equations and be clear about the molarity, molality, and normality of solutions. Molarity is different from molality so don’t get confused about the terms. The molarity of a solution is related to its molecular weight of the solution and the molality of the solution is related to its equivalent weight of the solution.
Recently Updated Pages
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE