$30ml$of $\dfrac{N}{{10}}HCl$ is required to neutralize $50ml$ of sodium carbonate solution. How many $ml$ of water must be added to $30ml$ of this solution. So that the solution obtained may have a concentration equal to $\dfrac{N}{{50}}?$
Answer
Verified
457.2k+ views
Hint: $HCl$ acid reacts with sodium hydro carbonate to form sodium chloride and hydrogen carbonate. First find the normality of sodium carbonate solution. Then use that to find the volume of the new solution added to make the normality equal to $\dfrac{N}{{50}}$
Complete Step by step answer:It is given in the question that,
Volume of HCl, ${V_{HCl}} = 30ml$
Normality of HCl, ${N_{HCl}} = \dfrac{N}{{10}}$
$ \Rightarrow {N_{HCl}} = 0.1N$
Volume of sodium carbonate, ${V_{N{a_2}C{O_3}}} = 50ml$
Given volume of HCl is neutralizing the given volume of sodium carbonate solution. Therefore, we can write,
${V_{N{a_2}C{O_3}}} \times {N_{N{a_2}C{O_3}}} = {V_{HCl}} \times {N_{HCl}}$
$ \Rightarrow {(V \times N)_{N{a_2}C{O_3}}} = {(V \times N)_{HCl}}$
Now, by substituting the values given in the question, we can write,
${(50 \times N)_{N{a_2}C{O_3}}} = {(30 \times 0.1N)_{HCl}}$
$ \Rightarrow 50 \times {N_{N{a_2}C{O_3}}} = 30 \times 0.1$
Rearranging it we can write
${N_{N{a_2}C{O_3}}} = \dfrac{{30 \times 0.1}}{{50}}$
On simplifying it, we get
$ \Rightarrow {N_{N{a_2}C{O_3}}} = \dfrac{3}{{50}}$
$ \Rightarrow {N_{N{a_2}C{O_3}}} = 0.06N$
Now, we have to add some solution to $30ml$ of $0.06N$, $N{a_2}C{O_3}$ such that its normality is $\dfrac{N}{{50}}$
$\dfrac{N}{{50}} = 0.02N$
We will again use the formula,
${N_1}{V_1} = {N_2}{V_2}$
Where,
${N_1}$ is the previous normality of the sodium carbonate solution
${V_1}$ is the given volume of the sodium carbonate solution
${N_2}$ is the new expected normality of sodium carbonate solution
${V_2}$ is the volume that we need to add in the solution
By rearranging the above formula, we can write
${V_2} = \dfrac{{{N_1}{V_1}}}{{{N_2}}}$
Putting the values we get,
$ \Rightarrow {V_2} = 90ml$
Therefore, $90ml$ of water should be $X$ added to get $0.02N$ solution.
Note: Neutralize hydrochloric acid with an alkali.Such as sodium bicarbonate. Wearing your protective garments and working in a ventilated area well away from children, pills, heat and metals prepare a base min, min $1/b$of baking soda with plenty of water, slowly add the hydrochloric acid.
Complete Step by step answer:It is given in the question that,
Volume of HCl, ${V_{HCl}} = 30ml$
Normality of HCl, ${N_{HCl}} = \dfrac{N}{{10}}$
$ \Rightarrow {N_{HCl}} = 0.1N$
Volume of sodium carbonate, ${V_{N{a_2}C{O_3}}} = 50ml$
Given volume of HCl is neutralizing the given volume of sodium carbonate solution. Therefore, we can write,
${V_{N{a_2}C{O_3}}} \times {N_{N{a_2}C{O_3}}} = {V_{HCl}} \times {N_{HCl}}$
$ \Rightarrow {(V \times N)_{N{a_2}C{O_3}}} = {(V \times N)_{HCl}}$
Now, by substituting the values given in the question, we can write,
${(50 \times N)_{N{a_2}C{O_3}}} = {(30 \times 0.1N)_{HCl}}$
$ \Rightarrow 50 \times {N_{N{a_2}C{O_3}}} = 30 \times 0.1$
Rearranging it we can write
${N_{N{a_2}C{O_3}}} = \dfrac{{30 \times 0.1}}{{50}}$
On simplifying it, we get
$ \Rightarrow {N_{N{a_2}C{O_3}}} = \dfrac{3}{{50}}$
$ \Rightarrow {N_{N{a_2}C{O_3}}} = 0.06N$
Now, we have to add some solution to $30ml$ of $0.06N$, $N{a_2}C{O_3}$ such that its normality is $\dfrac{N}{{50}}$
$\dfrac{N}{{50}} = 0.02N$
We will again use the formula,
${N_1}{V_1} = {N_2}{V_2}$
Where,
${N_1}$ is the previous normality of the sodium carbonate solution
${V_1}$ is the given volume of the sodium carbonate solution
${N_2}$ is the new expected normality of sodium carbonate solution
${V_2}$ is the volume that we need to add in the solution
By rearranging the above formula, we can write
${V_2} = \dfrac{{{N_1}{V_1}}}{{{N_2}}}$
Putting the values we get,
$ \Rightarrow {V_2} = 90ml$
Therefore, $90ml$ of water should be $X$ added to get $0.02N$ solution.
Note: Neutralize hydrochloric acid with an alkali.Such as sodium bicarbonate. Wearing your protective garments and working in a ventilated area well away from children, pills, heat and metals prepare a base min, min $1/b$of baking soda with plenty of water, slowly add the hydrochloric acid.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE