
3.1 mole of \[FeC{l_3}\] and \[3.2mole\] of \[N{H_4}SCN\] are added to one litre of water. At equilibrium, \[3.0mol\] of \[FeSC{N^{2 + }}\] are formed. The equilibrium constant of \[{K_c}\] of the reaction: \[F{e^{3 + }} + \;SCN \rightleftharpoons FeSC{N^{2 + }}\]will be:
(A) \[6.66 \times {10^{ - 3}}\]
(B) \[0.30\]
(C) \[3.30\]
(D) \[150\]
Answer
565.8k+ views
Hint:We need to know what is equilibrium and equilibrium constant. Equilibrium is the state in which both reactants and products are present in concentrations which have no further tendency to change with time. This happens when the rate of forward reaction is equal to the rate of reverse reaction.
For example, let we consider an equilibrium reaction,
$aA + bB \rightleftharpoons cC + dD$
For this reaction,
${K_c} = \dfrac{{{{\left[ C \right]}^c} \times {{\left[ D \right]}^d}}}{{{{\left[ A \right]}^a} \times {{\left[ B \right]}^b}}}$
Kc= Equilibrium constant
A and B are reactants of the reaction
C and D are products of the reaction
a, b, c and d are the number of moles of A, B, C and D respectively.
Complete step by step answer:
According to the question,
\[3.1mole\] of \[FeC{l_3}\] and \[3.2mole\] of \[N{H_4}SCN\] are added to one litre of water. This means that the initial concentrations of the reactants are \[3.1mole\] of \[FeC{l_3}\] and \[3.2mole\] of \[N{H_4}SCN\] before the reaction took place or before the equilibrium.
At equilibrium, \[3.0mol\] of \[FeSC{N^{2 + }}\] are formed. This means the concentration of the product formed after the reaction took place and reached an equilibrium state is \[3.0mol\] of \[FeSC{N^{2 + }}\].
We do not know the concentrations of the reactants at the equilibrium stage in order to calculate the equilibrium constant.
$F{e^{3 + }} + SCN \rightleftharpoons FeSC{N^{2 + }}$
\[\begin{array}{*{20}{c}}
{{\text{Initial moles}}\left( {{t_0}} \right)}&{{\text{ }}3.1}&{{\text{ }}3.2}&{{\text{ }}0}
\end{array}\]
$\begin{array}{*{20}{c}}
{{\text{Equilibrium concentration}}\left( {{t_{eq}}} \right)}&{\dfrac{{0.1}}{1}}&{\dfrac{{0.2}}{1}}&{{\text{ }}\dfrac{3}{1}}
\end{array}$
Hence the equilibrium constants can be calculated as
\[{K_{\mathbf{c}}} = \dfrac{{[FeSC{N^{2 + }}]}}{{[F{e^{3 + }}][SCN]}}\]
On substituting the known values we get,
$ \Rightarrow {K_c} = \dfrac{3}{{0.1 \times 0.2}}$
On simplification we get,
\[{K_c} = 150\]
Hence the correct option is option (D).
Note:
It must be noted that equilibrium constant value has no units as it is a constant. An equilibrium constant is equal to the ratio of the forward and reverse rate constants. The magnitude of the equilibrium constant indicates the extent to which a reaction will proceed: If K is a large number, it means that the equilibrium concentration of the products is large. In this case, the reaction as written will proceed to the right (resulting in an increase in the concentration of products).
For example, let we consider an equilibrium reaction,
$aA + bB \rightleftharpoons cC + dD$
For this reaction,
${K_c} = \dfrac{{{{\left[ C \right]}^c} \times {{\left[ D \right]}^d}}}{{{{\left[ A \right]}^a} \times {{\left[ B \right]}^b}}}$
Kc= Equilibrium constant
A and B are reactants of the reaction
C and D are products of the reaction
a, b, c and d are the number of moles of A, B, C and D respectively.
Complete step by step answer:
According to the question,
\[3.1mole\] of \[FeC{l_3}\] and \[3.2mole\] of \[N{H_4}SCN\] are added to one litre of water. This means that the initial concentrations of the reactants are \[3.1mole\] of \[FeC{l_3}\] and \[3.2mole\] of \[N{H_4}SCN\] before the reaction took place or before the equilibrium.
At equilibrium, \[3.0mol\] of \[FeSC{N^{2 + }}\] are formed. This means the concentration of the product formed after the reaction took place and reached an equilibrium state is \[3.0mol\] of \[FeSC{N^{2 + }}\].
We do not know the concentrations of the reactants at the equilibrium stage in order to calculate the equilibrium constant.
$F{e^{3 + }} + SCN \rightleftharpoons FeSC{N^{2 + }}$
\[\begin{array}{*{20}{c}}
{{\text{Initial moles}}\left( {{t_0}} \right)}&{{\text{ }}3.1}&{{\text{ }}3.2}&{{\text{ }}0}
\end{array}\]
$\begin{array}{*{20}{c}}
{{\text{Equilibrium concentration}}\left( {{t_{eq}}} \right)}&{\dfrac{{0.1}}{1}}&{\dfrac{{0.2}}{1}}&{{\text{ }}\dfrac{3}{1}}
\end{array}$
Hence the equilibrium constants can be calculated as
\[{K_{\mathbf{c}}} = \dfrac{{[FeSC{N^{2 + }}]}}{{[F{e^{3 + }}][SCN]}}\]
On substituting the known values we get,
$ \Rightarrow {K_c} = \dfrac{3}{{0.1 \times 0.2}}$
On simplification we get,
\[{K_c} = 150\]
Hence the correct option is option (D).
Note:
It must be noted that equilibrium constant value has no units as it is a constant. An equilibrium constant is equal to the ratio of the forward and reverse rate constants. The magnitude of the equilibrium constant indicates the extent to which a reaction will proceed: If K is a large number, it means that the equilibrium concentration of the products is large. In this case, the reaction as written will proceed to the right (resulting in an increase in the concentration of products).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

