Answer
Verified
478.5k+ views
Hint: Find the intensity of the photon using the intensity formula of the photon and then find the value of the energy of the photon with the given wavelength and finally find the value of the flux of the photon using the formula as $\dfrac{I}{E}$ .
Complete step-by-step solution:
Given the power of source P = 100 W
The wavelength of the emitted monochromatic light $\lambda= 6000 A^o$
Speed of light in vacuum C = $3\times 10^8 ms^{-1}$
Planck's constant h = $6.6\times 10^{-34} J$
Now we have to calculate the photon flux at a distance of 5 m from the source.
Let us find the intensity I
$I = \dfrac{P}{\text{surface area}} =\dfrac{P}{4\pi r^2}$ where r = 5 m
$I = \dfrac{100}{4\pi 5^2} = \dfrac{1}{\pi} \dfrac{W}{m^2}$
We know that photon flux is the number of photons passing normally per unit area per unit time.
Therefore photon flux = $I/E$
Where E = energy of photon = $\dfrac{hc}{\lambda} =\dfrac{ 6.6 \times 10^{-34} \times 3 \times 10^8}{ 6000 \times 10^{-10}} = 3.3 \times 10^{-19}$
So now we have got the energy of the photon and now we need to find the photon flux as below :
Photon flux = $\dfrac{I}{E} = \dfrac{\dfrac{1}{\pi} }{3.3 \times 10 ^{-19}} = 10 ^{18}$ photons $m^{-2}s^{-1}$.
Note: The possible mistake that one can make in this kind of problem is that we may take the photon intensity as the photon flux, which is wrong. There is a difference here. Intensity is the energy flux of the photon and the photon flux is the number of photons passing normally per unit area. So we need to take care of it.
Complete step-by-step solution:
Given the power of source P = 100 W
The wavelength of the emitted monochromatic light $\lambda= 6000 A^o$
Speed of light in vacuum C = $3\times 10^8 ms^{-1}$
Planck's constant h = $6.6\times 10^{-34} J$
Now we have to calculate the photon flux at a distance of 5 m from the source.
Let us find the intensity I
$I = \dfrac{P}{\text{surface area}} =\dfrac{P}{4\pi r^2}$ where r = 5 m
$I = \dfrac{100}{4\pi 5^2} = \dfrac{1}{\pi} \dfrac{W}{m^2}$
We know that photon flux is the number of photons passing normally per unit area per unit time.
Therefore photon flux = $I/E$
Where E = energy of photon = $\dfrac{hc}{\lambda} =\dfrac{ 6.6 \times 10^{-34} \times 3 \times 10^8}{ 6000 \times 10^{-10}} = 3.3 \times 10^{-19}$
So now we have got the energy of the photon and now we need to find the photon flux as below :
Photon flux = $\dfrac{I}{E} = \dfrac{\dfrac{1}{\pi} }{3.3 \times 10 ^{-19}} = 10 ^{18}$ photons $m^{-2}s^{-1}$.
Note: The possible mistake that one can make in this kind of problem is that we may take the photon intensity as the photon flux, which is wrong. There is a difference here. Intensity is the energy flux of the photon and the photon flux is the number of photons passing normally per unit area. So we need to take care of it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE