Answer
Verified
468k+ views
Hint: Find the intensity of the photon using the intensity formula of the photon and then find the value of the energy of the photon with the given wavelength and finally find the value of the flux of the photon using the formula as $\dfrac{I}{E}$ .
Complete step-by-step solution:
Given the power of source P = 100 W
The wavelength of the emitted monochromatic light $\lambda= 6000 A^o$
Speed of light in vacuum C = $3\times 10^8 ms^{-1}$
Planck's constant h = $6.6\times 10^{-34} J$
Now we have to calculate the photon flux at a distance of 5 m from the source.
Let us find the intensity I
$I = \dfrac{P}{\text{surface area}} =\dfrac{P}{4\pi r^2}$ where r = 5 m
$I = \dfrac{100}{4\pi 5^2} = \dfrac{1}{\pi} \dfrac{W}{m^2}$
We know that photon flux is the number of photons passing normally per unit area per unit time.
Therefore photon flux = $I/E$
Where E = energy of photon = $\dfrac{hc}{\lambda} =\dfrac{ 6.6 \times 10^{-34} \times 3 \times 10^8}{ 6000 \times 10^{-10}} = 3.3 \times 10^{-19}$
So now we have got the energy of the photon and now we need to find the photon flux as below :
Photon flux = $\dfrac{I}{E} = \dfrac{\dfrac{1}{\pi} }{3.3 \times 10 ^{-19}} = 10 ^{18}$ photons $m^{-2}s^{-1}$.
Note: The possible mistake that one can make in this kind of problem is that we may take the photon intensity as the photon flux, which is wrong. There is a difference here. Intensity is the energy flux of the photon and the photon flux is the number of photons passing normally per unit area. So we need to take care of it.
Complete step-by-step solution:
Given the power of source P = 100 W
The wavelength of the emitted monochromatic light $\lambda= 6000 A^o$
Speed of light in vacuum C = $3\times 10^8 ms^{-1}$
Planck's constant h = $6.6\times 10^{-34} J$
Now we have to calculate the photon flux at a distance of 5 m from the source.
Let us find the intensity I
$I = \dfrac{P}{\text{surface area}} =\dfrac{P}{4\pi r^2}$ where r = 5 m
$I = \dfrac{100}{4\pi 5^2} = \dfrac{1}{\pi} \dfrac{W}{m^2}$
We know that photon flux is the number of photons passing normally per unit area per unit time.
Therefore photon flux = $I/E$
Where E = energy of photon = $\dfrac{hc}{\lambda} =\dfrac{ 6.6 \times 10^{-34} \times 3 \times 10^8}{ 6000 \times 10^{-10}} = 3.3 \times 10^{-19}$
So now we have got the energy of the photon and now we need to find the photon flux as below :
Photon flux = $\dfrac{I}{E} = \dfrac{\dfrac{1}{\pi} }{3.3 \times 10 ^{-19}} = 10 ^{18}$ photons $m^{-2}s^{-1}$.
Note: The possible mistake that one can make in this kind of problem is that we may take the photon intensity as the photon flux, which is wrong. There is a difference here. Intensity is the energy flux of the photon and the photon flux is the number of photons passing normally per unit area. So we need to take care of it.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE