A 2.24 L of cylinder of oxygen is found to develop a leakage. When the leakage was plugged the pressure dropped to 570 mm Hg. The number of moles of gas that will escape is :
A) 0.025
B) 0.050
C) 0.075
D) 0.09
Answer
Verified
472.8k+ views
Hint: We can calculate the number of moles of gas that will escape with the help of calculating the drop in pressure and then by putting the values in the ideal gas equation. Now, according to the ideal gas equation,
PV = nRT
Where,
P = pressure of the gas
V = volume of the gas
R = Gas constant
n = number of moles of the gas
T = temperature of the gas
Complete answer:
Given :
Initial pressure = 1 atm=760 mm Hg
Final pressure = 570 mm Hg
Hence,
Drop in pressure = 760 - 570 = 190 mm Hg = $\dfrac{190}{760} atm$
Volume = 2.24 L
R = 0.0821 L atm $K^{-1}mol^{-1}$
T=273 K
Now, according to the ideal gas equation,
PV = nRT
or, $n = \dfrac{PV}{RT}$
By putting all the values,
$n= \dfrac{\dfrac{190}{760}\times 2.24}{0.0821\times273}$
= 0.025 mol
Hence, the number of moles of gas that will escape will be 0.025 mol.
So, option (a) is correct.
Note: Most of the time students attempt this question by just putting the given value of pressure in the ideal gas equation, which is wrong. So, we firstly calculate the drop in pressure and put that value of pressure in the ideal gas equation because drop in pressure exactly determines the amount of the gas which has escaped from the cylinder. Also, it should be also kept in mind that the unit of pressure should be the same as that given in the problem.
PV = nRT
Where,
P = pressure of the gas
V = volume of the gas
R = Gas constant
n = number of moles of the gas
T = temperature of the gas
Complete answer:
Given :
Initial pressure = 1 atm=760 mm Hg
Final pressure = 570 mm Hg
Hence,
Drop in pressure = 760 - 570 = 190 mm Hg = $\dfrac{190}{760} atm$
Volume = 2.24 L
R = 0.0821 L atm $K^{-1}mol^{-1}$
T=273 K
Now, according to the ideal gas equation,
PV = nRT
or, $n = \dfrac{PV}{RT}$
By putting all the values,
$n= \dfrac{\dfrac{190}{760}\times 2.24}{0.0821\times273}$
= 0.025 mol
Hence, the number of moles of gas that will escape will be 0.025 mol.
So, option (a) is correct.
Note: Most of the time students attempt this question by just putting the given value of pressure in the ideal gas equation, which is wrong. So, we firstly calculate the drop in pressure and put that value of pressure in the ideal gas equation because drop in pressure exactly determines the amount of the gas which has escaped from the cylinder. Also, it should be also kept in mind that the unit of pressure should be the same as that given in the problem.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE