Answer
Verified
469.8k+ views
Hint: Probability of any given event is equal to the ratio of the favourable outcomes with the total number of the outcomes. Probability is the state of being probable and the extent to which something is likely to happen in the particular situations.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers