
If the mean of the set of numbers ${x_1},{x_2},...,{x_n}$ is $\bar x$, then the mean of the numbers ${x_i} + 2i,1 \le i \le n$ is
A. $\bar x + 2n$
B. $\bar x + n + 1$
C. $\bar x + 3n$
D. $\bar x + n$
Answer
133.2k+ views
Hint: Here mean of the set of some numbers is given and mean of some numbers related to the given numbers is asked. To solve this type of problem, you need to use the formula of finding the mean of numbers. Basically, the mean is nothing but the average of some given numbers. It is obtained by calculating the sum of the observations divided by the total number of given observations.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

Difference Between Double Salt and Complex Salt: JEE Main 2024

JEE Main 2025: What is the Area of Square Formula?

Difference Between Power and Exponent: JEE Main 2024

Difference Between Pound and Kilogram with Definitions, Relation

Trending doubts
JEE Main B.Arch Cut Off Percentile 2025

Huygens Principle

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Difference Between Enantiomers and Diastereomers

Inductive Effect

Magnetic Field on the Axis of a Circular Current Loop for JEE

Other Pages
Maths Question Paper for CBSE Class 10 - 2007

Statistics Class 10 Notes CBSE Maths Chapter 13 (Free PDF Download)

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF
