Answer
Verified
108.3k+ views
Hint: Here mean of the set of some numbers is given and mean of some numbers related to the given numbers is asked. To solve this type of problem, you need to use the formula of finding the mean of numbers. Basically, the mean is nothing but the average of some given numbers. It is obtained by calculating the sum of the observations divided by the total number of given observations.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Formula Used:
Mean of the numbers ${x_1},{x_2},{x_3},...,{x_n}$ is defined by $\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$, where $n$ is total number of given observations.
Sum of first $n$ natural numbers is $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
Complete step by step solution:
The given numbers are ${x_1},{x_2},{x_3},...,{x_n}$
Mean of the numbers is the sum of observations divided by total number of given observations i.e.
$\bar x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}$
$ \Rightarrow {x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x - - - - - \left( i \right)$
We have to find the arithmetic mean of the numbers ${x_i} + 2i,1 \le i \le n$
Sum of the numbers is $\sum\limits_{i = 1}^n {\left( {{x_i} + 2i} \right)} $
Expand the series putting $i = 1,2,3,...,n$
$ = \left( {{x_1} + 2 \cdot 1} \right) + \left( {{x_2} + 2 \cdot 2} \right) + \left( {{x_3} + 2 \cdot 3} \right) + ... + \left( {{x_n} + 2 \cdot n} \right)$
Arrange the terms.
$ = \left( {{x_1} + {x_2} + {x_3} + ... + {x_n}} \right) + 2\left( {1 + 2 + 3 + ... + n} \right)$
There are total $n$ observations required.
So, $1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
and substitute ${x_1} + {x_2} + {x_3} + ... + {x_n} = n\bar x$ from equation $\left( i \right)$
Thus, the sum becomes $n\bar x + 2\left\{ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right\} = n\bar x + n\left( {n + 1} \right) = n\left( {\bar x + n + 1} \right)$
Dividing the sum by $n$, we get
Mean of the numbers $ = \dfrac{{n\left( {\bar x + n + 1} \right)}}{n} = \bar x + n + 1$
Option ‘B’ is correct
Note: Mean is simply average of the given numbers. If we add or subtract a number from each of the given numbers then, the mean of the resulting numbers will be equal to the mean of the given numbers with added or subtracted the number which we previously added or subtracted.
Recently Updated Pages
Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main
If cos 40circ x andcos theta 1 2x2 then the possible class 10 maths JEE_Main
If alpha and beta are the roots of beginarray20c 6x2 class 10 maths JEE_Main
If the roots of x2 + x + a 0 exceed a then A 2 a 3 class 10 maths JEE_Main
The quadratic polynomial whose zeros are 2 and 3 i-class-10-maths-JEE_Main
A farsighted man who has lost his spectacles reads class 10 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Lattice energy of an ionic compound depends upon A class 11 chemistry JEE_Main
As a result of isobaric heating Delta T 72K one mole class 11 physics JEE_Main
The graph of current versus time in a wire is given class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A 5m long pole of 3kg mass is placed against a smooth class 11 physics JEE_Main