
A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.
Answer
529.5k+ views
1 likes
Hint: Use Bayes’ theorem and probability is the ratio of favorable number of outcomes to the total number of outcomes.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag
Let and be the events of selecting first and second bag respectively.
Therefore probability of selecting one bag
Let be the event of getting a red ball.
Therefore probability of drawing a red ball from the first bag
Therefore probability of drawing a red ball from the Second bag
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by .
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
= events.
= Probability of given is true.
= Probability of given is true.
= Probability of given is true.
, = independent probabilities of and .
So, by Bayes’ theorem we have
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag
Let
Therefore probability of selecting one bag
Let
Therefore probability of drawing a red ball from the first bag
Therefore probability of drawing a red ball from the Second bag
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
So, by Bayes’ theorem we have
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Why is the cell called the structural and functional class 12 biology CBSE
