Answer
Verified
501.6k+ views
Hint: Use Bayes’ theorem and probability is the ratio of favorable number of outcomes to the total number of outcomes.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag $ = 4 + 4 = 8$
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag $ = 2 + 6 = 8$
Let ${x_1}$ and ${x_2}$ be the events of selecting first and second bag respectively.
Therefore probability of selecting one bag
$ \Rightarrow p\left( {{x_1}} \right) = \dfrac{{{\text{Favorable bag}}}}{{{\text{Total bag}}}} = \dfrac{1}{2} = p\left( {{x_2}} \right)$
Let ${A_1}$ be the event of getting a red ball.
Therefore probability of drawing a red ball from the first bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{4}{8} = \dfrac{1}{2}$
Therefore probability of drawing a red ball from the Second bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$.
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
${x_1},{x_2},{A_1}$ = events.
$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$= Probability of ${x_1}$ given ${A_1}$is true.
$p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)$ = Probability of ${A_1}$ given ${x_1}$ is true.
$p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)$ = Probability of ${A_1}$ given ${x_2}$ is true.
$p\left( {{x_1}} \right)$, $p\left( {{x_2}} \right)$ = independent probabilities of ${x_1}$ and ${x_2}$.
So, by Bayes’ theorem we have
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)}}{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) + p\left( {{x_2}} \right).p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)}}$
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{\dfrac{1}{2}.\dfrac{1}{2}}}{{\dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{4}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{1}{4} + \dfrac{1}{8}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{3}{8}}} = \dfrac{2}{3} = 0.66$
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag $ = 4 + 4 = 8$
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag $ = 2 + 6 = 8$
Let ${x_1}$ and ${x_2}$ be the events of selecting first and second bag respectively.
Therefore probability of selecting one bag
$ \Rightarrow p\left( {{x_1}} \right) = \dfrac{{{\text{Favorable bag}}}}{{{\text{Total bag}}}} = \dfrac{1}{2} = p\left( {{x_2}} \right)$
Let ${A_1}$ be the event of getting a red ball.
Therefore probability of drawing a red ball from the first bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{4}{8} = \dfrac{1}{2}$
Therefore probability of drawing a red ball from the Second bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$.
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
${x_1},{x_2},{A_1}$ = events.
$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$= Probability of ${x_1}$ given ${A_1}$is true.
$p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)$ = Probability of ${A_1}$ given ${x_1}$ is true.
$p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)$ = Probability of ${A_1}$ given ${x_2}$ is true.
$p\left( {{x_1}} \right)$, $p\left( {{x_2}} \right)$ = independent probabilities of ${x_1}$ and ${x_2}$.
So, by Bayes’ theorem we have
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)}}{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) + p\left( {{x_2}} \right).p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)}}$
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{\dfrac{1}{2}.\dfrac{1}{2}}}{{\dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{4}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{1}{4} + \dfrac{1}{8}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{3}{8}}} = \dfrac{2}{3} = 0.66$
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Recently Updated Pages
Let a b and c be three real numbers satisfying left class 12 maths JEE_Main
If P is a 3 3 matrix such that PT 2P + I where PT is class 12 maths JEE_Main
Let p be an odd prime number and Tp be the following class 12 maths JEE_Main
A ray of light passes through an equilateral prism class 12 physics JEE_Main
The size of the image of an object which is at infinity class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE