
A battery of emf 10V and internal resistance 3Ω is connected to a resistor. If the current in the circuit is 0.5A, what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?
Answer
504.3k+ views
Hint: Draw the circuit diagram according to the question. Internal resistance can be considered to be a series resistance with the battery. Use Kirchhoff's Voltage Law to write the voltage equation for the circuit. Solve it to find the resistor. Terminal voltage of the battery is given by the multiplication of load current and load resistance.
Formula Used:
Ohm’s law gives us,
V=IR
Where,
V is the voltage across the resistor
I is the current through the resistor
R is the resistance of the resistor
Complete step by step answer:
Let us first, look at the circuit diagram.
Let’s assume that the current flowing through the circuit is i.
So, we can write,
The value of the external resistance is R
The EMF of the battery is 10 V
Hence, we can write,
Internal resistance of the battery, r =3Ω.
We can write the following equation using Kirchhoff’s voltage law,
Hence, the value of Resistance R = 17 Ω
Now, we can find the voltage across the battery by calculating the voltage across the load resistor.
Voltage across the battery and voltage across the load resistor should be the same because we can consider them to be in parallel connection.
Hence, we can write,
The terminal voltage of the battery = The load voltage =
So, the terminal voltage of the battery is 8.5 V.
Note: The terminal voltage of the battery is less than the EMF of the battery because of the presence of internal resistance. We can find the terminal voltage in another method as well.
The terminal voltage will be given by,
Some of the EMF is lost in the voltage drop across the internal resistance.
Formula Used:
Ohm’s law gives us,
V=IR
Where,
V is the voltage across the resistor
I is the current through the resistor
R is the resistance of the resistor
Complete step by step answer:
Let us first, look at the circuit diagram.

Let’s assume that the current flowing through the circuit is i.
So, we can write,
The value of the external resistance is R
The EMF of the battery is 10 V
Hence, we can write,
Internal resistance of the battery, r =3Ω.
We can write the following equation using Kirchhoff’s voltage law,
Hence, the value of Resistance R = 17 Ω
Now, we can find the voltage across the battery by calculating the voltage across the load resistor.
Voltage across the battery and voltage across the load resistor should be the same because we can consider them to be in parallel connection.
Hence, we can write,
The terminal voltage of the battery = The load voltage =
So, the terminal voltage of the battery is 8.5 V.
Note: The terminal voltage of the battery is less than the EMF of the battery because of the presence of internal resistance. We can find the terminal voltage in another method as well.
The terminal voltage will be given by,
Some of the EMF is lost in the voltage drop across the internal resistance.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Franz thinks Will they make them sing in German even class 12 english CBSE
