
A bird is singing on a tree. A person approaches the tree and perceives that the intensity has increased by $10\,\,db$. Find the ratio of initial and final separation between the man and the bird.
Answer
127.8k+ views
Hint: The amount of energy passing per unit time through a unit area that is perpendicular to the direction in which the sound waves are travelling is known as the sound intensity. Sound intensity can be calculated in units of energy or work.
Useful formula:
The formula for intensity of the sound is;
$I = \dfrac{P}{{4\pi {r^2}}}\,\,$
Where, $I$ denotes the intensity of the sound of the bird, $P$ denotes the power of the intensity of the sound.
Complete step by step solution:
The data given in the problem are;
The intensity of the sound is $10\,\,db$.
Let the initial position be at a ${r_1}$ distance from the bird and the final position ${r_2}$ distance from the bird.
The formula for intensity of the sound is;
${I_1} = \dfrac{P}{{4\pi r_1^2}}\,\,,\,\,{I_2} = \dfrac{P}{{4\pi r_2^2}}$
Where, ${I_1}$ denotes the intensity of the sound at the first distance, ${I_1}$ denotes the intensity of the sound at the sound distance, $P$ denotes the power of the intensity of the sound.
In the decibel form substitute the values given data;
$10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10$
Where, ${I_o}$ denotes the total intensity of the sound.
$
10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10 \\
\log \,\,\dfrac{{{I_2}}}{{{I_1}}} = 1 \\
\dfrac{{r_1^2}}{{r_2^2}} = 10 \\
{r_1}:{r_2} = \sqrt {10} :1 \\
$
Note: Sound intensity which can also be the acoustic intensity, which can be explained as the power loaded by sound waves per unit area in a side perpendicular to that area. Sound intensity is not the same physical quantity as sound pressure. Human hearing is directly sensitive to sound pressure which is related to sound intensity.
Useful formula:
The formula for intensity of the sound is;
$I = \dfrac{P}{{4\pi {r^2}}}\,\,$
Where, $I$ denotes the intensity of the sound of the bird, $P$ denotes the power of the intensity of the sound.
Complete step by step solution:
The data given in the problem are;
The intensity of the sound is $10\,\,db$.
Let the initial position be at a ${r_1}$ distance from the bird and the final position ${r_2}$ distance from the bird.
The formula for intensity of the sound is;
${I_1} = \dfrac{P}{{4\pi r_1^2}}\,\,,\,\,{I_2} = \dfrac{P}{{4\pi r_2^2}}$
Where, ${I_1}$ denotes the intensity of the sound at the first distance, ${I_1}$ denotes the intensity of the sound at the sound distance, $P$ denotes the power of the intensity of the sound.
In the decibel form substitute the values given data;
$10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10$
Where, ${I_o}$ denotes the total intensity of the sound.
$
10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10 \\
\log \,\,\dfrac{{{I_2}}}{{{I_1}}} = 1 \\
\dfrac{{r_1^2}}{{r_2^2}} = 10 \\
{r_1}:{r_2} = \sqrt {10} :1 \\
$
Note: Sound intensity which can also be the acoustic intensity, which can be explained as the power loaded by sound waves per unit area in a side perpendicular to that area. Sound intensity is not the same physical quantity as sound pressure. Human hearing is directly sensitive to sound pressure which is related to sound intensity.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
