
A black body at a temperature of radiates heat energy at the rate . At a temperature of , the rate of heat radiated per unit area in will be:
A. 80
B. 160
C. 250
D. 500
Answer
490.2k+ views
Hint:The radiation energy emitted by a black body per unit surface area of the body in one unit of time is directly proportional to the fourth power of the temperature of the body. Use this and form equations for the two rates of energy and find the unknown rate.
Formula used:
Complete answer:
A black body is a body that absorbs and radiates heat radiations in the form of electromagnetic waves of all the possible wavelengths.
The rate of emission of the radiation of energy by a black body is directly proportional to the fourth power of the temperature of the body. That is the radiation energy emitted by a black body per unit of the surface area of the body in one unit of time is directly proportional to the fourth power of the temperature of the body.
i.e. .
, where k is the proportionality constant.
It is given that the rate of the heat energy radiated by the black body at temperature of is .
Let and .
…… (i).
Let the rate of the heat energy radiated by the black body at temperature of be .
Convert the temperature in kelvin.
.
….. (ii).
Divide equation (ii) by equation (i).
.
So, the correct answer is “Option A”.
Note:
Always remember to substitute the value of temperature in kelvin in the formulae of thermodynamics or problems related to temperature. This is because all the formulae are derived considering the kelvin scale for temperature.
Formula used:
Complete answer:
A black body is a body that absorbs and radiates heat radiations in the form of electromagnetic waves of all the possible wavelengths.
The rate of emission of the radiation of energy by a black body is directly proportional to the fourth power of the temperature of the body. That is the radiation energy emitted by a black body per unit of the surface area of the body in one unit of time is directly proportional to the fourth power of the temperature of the body.
i.e.
It is given that the rate of the heat energy radiated by the black body at temperature of
Let
Let the rate of the heat energy radiated by the black body at temperature of
Convert the temperature in kelvin.
Divide equation (ii) by equation (i).
So, the correct answer is “Option A”.
Note:
Always remember to substitute the value of temperature in kelvin in the formulae of thermodynamics or problems related to temperature. This is because all the formulae are derived considering the kelvin scale for temperature.
Latest Vedantu courses for you
Grade 9 | CBSE | SCHOOL | English
Vedantu 9 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
