Answer
Verified
441.3k+ views
Hint: In this solution, we will first check for the maximum friction force that will act on the object and the maximum force that can be exerted on the object. The external force has to be greater than the friction force if the object has to be accelerated.
Formula used: In this solution, we will use the following formula
$ {F_f} = \mu mg $ where $ \mu $ is the coefficient of friction, $ m $ is the mass of the block, and $ g $ is the gravitational acceleration.
Complete step by step answer
We’ve been given that the force acting on the block is $ F = 2sin\omega t $ . Let us start by finding the maximum value of $ F $ . The value of $ F $ changes with time and the maximum value corresponds to $ \sin \omega t = 1 $ which is
$ F = 2 $
Now, the friction force acting on the object will be
$ {F_f} = 0.25 \times 1 \times 9.8 $
$ \Rightarrow {F_f} = 2.45\,N $
So we can see that friction force is greater than the external force acting on the object. Hence for no value of the external force will the body be accelerated.
Hence the correct choice is option (C).
Note
For the object to accelerate the external force must exceed $ 2.45\,N $ in which case it can overcome the friction force and be accelerated. The tricky part in this question is realizing that the maximum value of the external force will only depend on the maximum value of the sine function. This is because regardless of the angular frequency and the time of the external force, the maximum value it can ever attain is 1. All the other values of the forces at different times will be lower than $ 2\,N $ and hence the block can never be accelerated.
Formula used: In this solution, we will use the following formula
$ {F_f} = \mu mg $ where $ \mu $ is the coefficient of friction, $ m $ is the mass of the block, and $ g $ is the gravitational acceleration.
Complete step by step answer
We’ve been given that the force acting on the block is $ F = 2sin\omega t $ . Let us start by finding the maximum value of $ F $ . The value of $ F $ changes with time and the maximum value corresponds to $ \sin \omega t = 1 $ which is
$ F = 2 $
Now, the friction force acting on the object will be
$ {F_f} = 0.25 \times 1 \times 9.8 $
$ \Rightarrow {F_f} = 2.45\,N $
So we can see that friction force is greater than the external force acting on the object. Hence for no value of the external force will the body be accelerated.
Hence the correct choice is option (C).
Note
For the object to accelerate the external force must exceed $ 2.45\,N $ in which case it can overcome the friction force and be accelerated. The tricky part in this question is realizing that the maximum value of the external force will only depend on the maximum value of the sine function. This is because regardless of the angular frequency and the time of the external force, the maximum value it can ever attain is 1. All the other values of the forces at different times will be lower than $ 2\,N $ and hence the block can never be accelerated.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers