
A body is thrown vertically upward in air and air resistance is taken into account. The time of ascent is ${t_1}$ and time of descent is ${t_2}$, then which of the following is true
(A) ${t_1} = {t_2}$
(B) ${t_1} > {t_2}$
(C) ${t_1} < {t_2}$
(D) Cannot be predicted
Answer
131.7k+ views
Hint:In order to solve this question, we should know that air resistance force always acts in a direction opposite to that of direction of motion of the body, so here we will find effective acceleration of body in both cases and then using newton’s equation of motion to find relation between time of ascent and time of descent.
Formula used:
$v = u + at$
${v^2} - {u^2} = 2aS$
$S = ut + \dfrac{1}{2}a{t^2}$
where,
v is the final velocity, u is the initial velocity of the body
S is the distance covered, a is the acceleration of the body and t denotes time taken by the body.
Complete answer:
Let us assume the acceleration due to air resistance force is ‘a’ and acceleration due to gravity is ‘g’ and total height reached by the body is H, during ascent and descent of the particle the net acceleration acting on the particle is shown in the diagram as

Now, During ascent time taken by the body to rise with initial velocity u and net acceleration ${a_{net}} = g + a$ is
using equation $v = u + at$ as final velocity during ascent is zero and net acceleration will be taken as negative so ${t_1} = \dfrac{u}{{g + a}}$ and height H reached by the body can be calculated using ${v^2} - {u^2} = 2aS$ we get
$
{u^2} = 2(g + a)H \\
\Rightarrow H = \dfrac{{{u^2}}}{{2(g + a)}} \to (i) \\
$
Now, during the descent the distance covered by the body will be H with acceleration $a{'_{net}} = g - a$ with time ${t_2}$ so using newton’s equation of motion as
$S = ut + \dfrac{1}{2}a{t^2}$ and since initial velocity is zero during descent so we get,
$H = \dfrac{1}{2}(g - a){t_2}^2$ using the value of H from equation (i) we get,
$
\dfrac{{{u^2}}}{{2(g + a)}} = \dfrac{1}{2}(g - a){t_2}^2 \\
{t_2} = \dfrac{u}{{g + a}}\sqrt {\dfrac{{g + a}}{{g - a}}} \\
$
using the value ${t_1} = \dfrac{u}{{g + a}}$ we get,
${t_2} = {t_1}\sqrt {\dfrac{{g + a}}{{g - a}}} $
now since, we know that $\dfrac{{g + a}}{{g - a}} > 1$ so,
${t_2} > {t_1}$ or ${t_1} < {t_2}$
So, the time of descent will be larger than the time of ascent.
Hence, the correct answer is ${t_1} > {t_2}$
Hence, the correct option is Option (B).
Note:Always pay attention while calculating the acceleration values during ascent and descent. Also consider the effect of gravity on the motion of the body during ascent and descent.
Formula used:
$v = u + at$
${v^2} - {u^2} = 2aS$
$S = ut + \dfrac{1}{2}a{t^2}$
where,
v is the final velocity, u is the initial velocity of the body
S is the distance covered, a is the acceleration of the body and t denotes time taken by the body.
Complete answer:
Let us assume the acceleration due to air resistance force is ‘a’ and acceleration due to gravity is ‘g’ and total height reached by the body is H, during ascent and descent of the particle the net acceleration acting on the particle is shown in the diagram as

Now, During ascent time taken by the body to rise with initial velocity u and net acceleration ${a_{net}} = g + a$ is
using equation $v = u + at$ as final velocity during ascent is zero and net acceleration will be taken as negative so ${t_1} = \dfrac{u}{{g + a}}$ and height H reached by the body can be calculated using ${v^2} - {u^2} = 2aS$ we get
$
{u^2} = 2(g + a)H \\
\Rightarrow H = \dfrac{{{u^2}}}{{2(g + a)}} \to (i) \\
$
Now, during the descent the distance covered by the body will be H with acceleration $a{'_{net}} = g - a$ with time ${t_2}$ so using newton’s equation of motion as
$S = ut + \dfrac{1}{2}a{t^2}$ and since initial velocity is zero during descent so we get,
$H = \dfrac{1}{2}(g - a){t_2}^2$ using the value of H from equation (i) we get,
$
\dfrac{{{u^2}}}{{2(g + a)}} = \dfrac{1}{2}(g - a){t_2}^2 \\
{t_2} = \dfrac{u}{{g + a}}\sqrt {\dfrac{{g + a}}{{g - a}}} \\
$
using the value ${t_1} = \dfrac{u}{{g + a}}$ we get,
${t_2} = {t_1}\sqrt {\dfrac{{g + a}}{{g - a}}} $
now since, we know that $\dfrac{{g + a}}{{g - a}} > 1$ so,
${t_2} > {t_1}$ or ${t_1} < {t_2}$
So, the time of descent will be larger than the time of ascent.
Hence, the correct answer is ${t_1} > {t_2}$
Hence, the correct option is Option (B).
Note:Always pay attention while calculating the acceleration values during ascent and descent. Also consider the effect of gravity on the motion of the body during ascent and descent.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
