A broad beam of light of wavelength 683nm is sent directly downward through the top plate of a pair of glass plates. The plates are 120mm long, touch at the left end, and are separated by $48.0\mu m$ at the right end. The air between the plates acts as a thin film. How many bright fringes will be seen by an observer looking down through the top plate?
Answer
Verified
117k+ views
Hint Bright or dark fringe pattern is a result of interference or diffraction. Interference occurs when two waves superimpose onto each other. Here, we observe the superimposition of two reflected waves. You have to recall that when a wave reflects normally from the surface of a denser medium back into the rarer medium, a phase difference of $\pi $ is introduced.
Complete Step by step solution
In this problem, the interference of the two waves is taking place. One is reflected from the plate-air interface (top of the air thin film) and the other is reflected from the air-plate interface (bottom of the air thin film).
We know that, any wave that is reflected normally from the surface of a rarer medium back into the denser medium undergoes no phase change. However, the same cannot be said for a wave reflected normally from the surface of the denser medium back into the rarer medium. In such cases, a phase difference of $\pi $ is introduced.
In the case of thin- film interference, the condition for constructive interference is given as,
$2L = \left( {n + \dfrac{1}{2}} \right)\lambda $ $ - - - - (1)$
where,
$L$ is the thickness of the thin film,
$\lambda $ is the wavelength of the light.
For this problem, we consider the right most part of this system, where the thickness of the thin film is $48.0\mu m$ .
Thus, $L = 48\mu m$ .
$ \Rightarrow L = 48 \times {10^ - }^6m$
Given, $\lambda = 683nm$ .
$ \Rightarrow \lambda = 683 \times {10^ - }^9m$
Using these numerical values in equation (1), we get
$2 \times 48 \times {10^ - }^6 = \left( {n + \dfrac{1}{2}} \right)683 \times {10^ - }^9$
$ \Rightarrow \left( {n + \dfrac{1}{2}} \right) = \dfrac{{2 \times 48 \times {{10}^ - }^6}}{{683 \times {{10}^ - }^9}}$
Solving this, we get
$\left( {n + \dfrac{1}{2}} \right) \simeq 140.5$
$ \Rightarrow n = 140$ .
So, $140$ bright fringes will be seen by an observer looking down through the top plate.
Note The condition for bright or dark fringes should be correct to approach such problems. Often units of wavelength, thickness, etc. are not SI units. Converting them to the SI unit will help you to avoid any mistakes.
Complete Step by step solution
In this problem, the interference of the two waves is taking place. One is reflected from the plate-air interface (top of the air thin film) and the other is reflected from the air-plate interface (bottom of the air thin film).
We know that, any wave that is reflected normally from the surface of a rarer medium back into the denser medium undergoes no phase change. However, the same cannot be said for a wave reflected normally from the surface of the denser medium back into the rarer medium. In such cases, a phase difference of $\pi $ is introduced.
In the case of thin- film interference, the condition for constructive interference is given as,
$2L = \left( {n + \dfrac{1}{2}} \right)\lambda $ $ - - - - (1)$
where,
$L$ is the thickness of the thin film,
$\lambda $ is the wavelength of the light.
For this problem, we consider the right most part of this system, where the thickness of the thin film is $48.0\mu m$ .
Thus, $L = 48\mu m$ .
$ \Rightarrow L = 48 \times {10^ - }^6m$
Given, $\lambda = 683nm$ .
$ \Rightarrow \lambda = 683 \times {10^ - }^9m$
Using these numerical values in equation (1), we get
$2 \times 48 \times {10^ - }^6 = \left( {n + \dfrac{1}{2}} \right)683 \times {10^ - }^9$
$ \Rightarrow \left( {n + \dfrac{1}{2}} \right) = \dfrac{{2 \times 48 \times {{10}^ - }^6}}{{683 \times {{10}^ - }^9}}$
Solving this, we get
$\left( {n + \dfrac{1}{2}} \right) \simeq 140.5$
$ \Rightarrow n = 140$ .
So, $140$ bright fringes will be seen by an observer looking down through the top plate.
Note The condition for bright or dark fringes should be correct to approach such problems. Often units of wavelength, thickness, etc. are not SI units. Converting them to the SI unit will help you to avoid any mistakes.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids