Answer
Verified
395.7k+ views
Hint: Kinematics is a branch of physics that deals with the motion of points, bodies (objects), and structures of bodies (groups of objects) without taking into account the forces that drive them. Kinematics is often referred to as the "geometry of motion" and is often considered a branch of mathematics.
Formula used:
Formulas of Kinematics are:
$V = u + at \\
{V^2} = {u^2} + 2as \\
s = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
According to Newton’s second law: The second law states that the rate at which a body's momentum changes over time is proportional to the force applied and occurs in the same direction as the applied force.
$F = \dfrac{{dp}}{{dt}}$
Where $p$ is the mass momentum of the body.
The second law can be re-stated in terms of an object's acceleration for objects and structures with constant mass.
$F = \dfrac{{d(mv)}}{{dt}} \\
\Rightarrow F= m\dfrac{{dv}}{{dt}} \\
\Rightarrow F = ma$
Where \[F\] is the applied net force, $m$ is the body's mass, and $a$ is the body's acceleration. As a result, a proportional acceleration is generated by the net force applied to a body.
Given: Mass of the bullet $(m) = 20\,g= 0.02\,kg$
Initial velocity $(u) = 100$ m/s
Final velocity $(v) = 0$ (since the bullet has come to a rest)
Time taken to come to rest $(t) = 0.05s$
According to the first equation of kinematics:
$V = u + at$
Acceleration of the bullet (a)
$0 = 100 + a( - 0.05) \\
\Rightarrow a = - \dfrac{{100}}{{0.05}} \\
\Rightarrow a = - 2000\,m/{s^2} \\$
The negative sign here means that the bullet's velocity is decreasing.
From Newton’s law of motion we know that:
$\text{Force(F)} = \text{Mass} \times \text{Acceleration}$
$\Rightarrow F = 0.02 \times ( - 2000)$
$\therefore F = - 40\,N$
As a result, the force exerted on the bullet by the wooden block is 50 N.
Note: A condition that must be met in order to apply motion equations. It should be much slower than the speed of light in order to avoid relativistic effects. If $v$ is the object's velocity and $c$ is the speed of light, then Newton's laws of motion should apply if $v$ and $c$ are very close to $0$. It is not necessary to maintain constant acceleration or travel in a straight line.
Formula used:
Formulas of Kinematics are:
$V = u + at \\
{V^2} = {u^2} + 2as \\
s = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
According to Newton’s second law: The second law states that the rate at which a body's momentum changes over time is proportional to the force applied and occurs in the same direction as the applied force.
$F = \dfrac{{dp}}{{dt}}$
Where $p$ is the mass momentum of the body.
The second law can be re-stated in terms of an object's acceleration for objects and structures with constant mass.
$F = \dfrac{{d(mv)}}{{dt}} \\
\Rightarrow F= m\dfrac{{dv}}{{dt}} \\
\Rightarrow F = ma$
Where \[F\] is the applied net force, $m$ is the body's mass, and $a$ is the body's acceleration. As a result, a proportional acceleration is generated by the net force applied to a body.
Given: Mass of the bullet $(m) = 20\,g= 0.02\,kg$
Initial velocity $(u) = 100$ m/s
Final velocity $(v) = 0$ (since the bullet has come to a rest)
Time taken to come to rest $(t) = 0.05s$
According to the first equation of kinematics:
$V = u + at$
Acceleration of the bullet (a)
$0 = 100 + a( - 0.05) \\
\Rightarrow a = - \dfrac{{100}}{{0.05}} \\
\Rightarrow a = - 2000\,m/{s^2} \\$
The negative sign here means that the bullet's velocity is decreasing.
From Newton’s law of motion we know that:
$\text{Force(F)} = \text{Mass} \times \text{Acceleration}$
$\Rightarrow F = 0.02 \times ( - 2000)$
$\therefore F = - 40\,N$
As a result, the force exerted on the bullet by the wooden block is 50 N.
Note: A condition that must be met in order to apply motion equations. It should be much slower than the speed of light in order to avoid relativistic effects. If $v$ is the object's velocity and $c$ is the speed of light, then Newton's laws of motion should apply if $v$ and $c$ are very close to $0$. It is not necessary to maintain constant acceleration or travel in a straight line.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE