Answer
Verified
113.1k+ views
Hint: The rise of water in the capillary is due to adhesive forces dominating over the cohesive force of the liquid. The rise of water in the capillary also depends upon the density of the water.
If the capillary is taken out of the water and if it contains liquid it is because the surface tension on the lower side of the tube was able to hold the weight of the water above it
Theory:
Surface Tension: Liquid surfaces tend to shrink into the minimum surface area possible. Surface tension allows insects (e.g., mosquitoes), to sit on the surface without drowning
When the capillary tube is dipped into the water, the water will rise to a height of$h$, now as the capillary is taken out of the water, and the hand is removed from the bottom there a meniscus will be formed due to surface tension.
Complete step by step solution:
The height $h$ up to which the water will rise in the tube when it is dipped in water is given by
$h = \dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}$
Where
$h$is the height up to which water rises in a tube
$T$ is the surface tension
$\theta $ is the angle made by the meniscus
$r$ is the radius of the capillary tube
$\rho $is the density of water
$g$ gravity
Now when the tube is taken out of the water,
Let the new height be $h`$
The weight will be supported by total upward force due to surface tension
on both side A and B
The upward force is given by
$F = 2\pi rT\cos \theta $
Here the upward force is acting at 2 points A and B i.e., top meniscus and bottom meniscus
So total upward force will be
$\Rightarrow {F_{total}} = 2 \times 2\pi rT\cos \theta $
Now this total force will be supporting the weight of the water inside the tube
The weight of the water in a cylinder is given
$\Rightarrow W = mg$
$ \Rightarrow W = \left( {\pi {r^2}h`} \right)\rho g$
Now this total force will be supported by the total upward force
$
\left( {\pi {r^2}h`} \right)\rho g = 2 \times 2\pi rT\cos \theta \\
\Rightarrow h` = \dfrac{{4T\cos \theta }}{{r\rho g}} \\
$
Now we have got both the heights
$\left( h \right)$due to immersion of capillary into the water and $\left( {h`} \right)$ after removing it from water
Hence,
$h = \dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}$ $h` = \dfrac{{4T\cos \theta }}{{r\rho g}}$
Now divide
\[
\Rightarrow \dfrac{h}{{h`}} = \dfrac{{\left( {\dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}} \right)}}{{\left( {\dfrac{{4T\cos \theta }}{{r\rho g}}} \right)}} \\
\Rightarrow \dfrac{h}{{h`}} = \dfrac{1}{2} \\
\Rightarrow h` = 2h \\
\]
The new height after the removal of the tube from the water will be twice the precious height when the tube was dipped into the water.
Note: The pressure at any point inside the water is equal to all other points because of the surface tension water tends to acquire the smallest surface area this is the reason why water droplets are spherical. If the lower end of the tube is not covered then the water will move out when lifted.
If the capillary is taken out of the water and if it contains liquid it is because the surface tension on the lower side of the tube was able to hold the weight of the water above it
Theory:
Surface Tension: Liquid surfaces tend to shrink into the minimum surface area possible. Surface tension allows insects (e.g., mosquitoes), to sit on the surface without drowning
When the capillary tube is dipped into the water, the water will rise to a height of$h$, now as the capillary is taken out of the water, and the hand is removed from the bottom there a meniscus will be formed due to surface tension.
Complete step by step solution:
The height $h$ up to which the water will rise in the tube when it is dipped in water is given by
$h = \dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}$
Where
$h$is the height up to which water rises in a tube
$T$ is the surface tension
$\theta $ is the angle made by the meniscus
$r$ is the radius of the capillary tube
$\rho $is the density of water
$g$ gravity
Now when the tube is taken out of the water,
Let the new height be $h`$
The weight will be supported by total upward force due to surface tension
on both side A and B
The upward force is given by
$F = 2\pi rT\cos \theta $
Here the upward force is acting at 2 points A and B i.e., top meniscus and bottom meniscus
So total upward force will be
$\Rightarrow {F_{total}} = 2 \times 2\pi rT\cos \theta $
Now this total force will be supporting the weight of the water inside the tube
The weight of the water in a cylinder is given
$\Rightarrow W = mg$
$ \Rightarrow W = \left( {\pi {r^2}h`} \right)\rho g$
Now this total force will be supported by the total upward force
$
\left( {\pi {r^2}h`} \right)\rho g = 2 \times 2\pi rT\cos \theta \\
\Rightarrow h` = \dfrac{{4T\cos \theta }}{{r\rho g}} \\
$
Now we have got both the heights
$\left( h \right)$due to immersion of capillary into the water and $\left( {h`} \right)$ after removing it from water
Hence,
$h = \dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}$ $h` = \dfrac{{4T\cos \theta }}{{r\rho g}}$
Now divide
\[
\Rightarrow \dfrac{h}{{h`}} = \dfrac{{\left( {\dfrac{{2T\operatorname{Cos} \theta }}{{r\rho g}}} \right)}}{{\left( {\dfrac{{4T\cos \theta }}{{r\rho g}}} \right)}} \\
\Rightarrow \dfrac{h}{{h`}} = \dfrac{1}{2} \\
\Rightarrow h` = 2h \\
\]
The new height after the removal of the tube from the water will be twice the precious height when the tube was dipped into the water.
Note: The pressure at any point inside the water is equal to all other points because of the surface tension water tends to acquire the smallest surface area this is the reason why water droplets are spherical. If the lower end of the tube is not covered then the water will move out when lifted.
Recently Updated Pages
Isoelectronic Species, Molecules, and Structure Important Concepts for JEE
Fluid Pressure - Important Concepts and Tips for JEE
Difference Between Electric Current and Potential Difference: JEE Main 2024
NTA JEE Mains 2025 Correction window - Dates and Procedure
JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key
JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
Laws of Motion Class 11 Notes CBSE Physics Chapter 4 (Free PDF Download)