Answer
Verified
445.5k+ views
Hint: Here we will use the formula of the efficiency of the Carnot engine to calculate the temperature of the sink. Here, we will calculate the temperature ${T_1}$ in terms of ${T_2}$ , and then we will calculate the value of ${T_2}$ by substitution method. After calculating the value of ${T_2}$, we will put it in the equation of ${T_1}$ to calculate the temperature of the sink ${T_1}$ .
Complete step by step answer:
We know that the efficiency of the Carnot engine is defined as the ratio of the work done to obtain the output from the engine to the heat supplied to the engine and is given by
$\eta = \dfrac{W}{{{Q_1}}}$
$ \Rightarrow\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}$
$ \Rightarrow\eta = 1 - \dfrac{{{Q_2}}}{{{Q_1}}}$
Also, we can show that
$\dfrac{{{Q_2}}}{{{Q_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$
Therefore, the efficiency of the Carnot engine will become
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Now, the efficiency of the Carnot engine is $\dfrac{1}{5}$ as given in the question.
Therefore, $\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{5} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 5{T_1} - 5{T_2}$
$ \Rightarrow \,4{T_1} = 5{T_2}$
$ \Rightarrow \,{T_1} = \dfrac{{5{T_2}}}{4}$
Now, it is given in the question that when the temperature is reduced to $50\,K$, the efficiency of the Carnot engine will become $\dfrac{1}{3}$, hence, we will take the temperature ${T_2}$ as ${T_2} - 50$ .
Therefore, $\dfrac{1}{3} = 1 - \dfrac{{{T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{3} = \dfrac{{{T_1} - {T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 3{T_1} - 3{T_2} - 150$
$ \Rightarrow \,2{T_1} - 3{T_2} - 150 = 0$
Now, putting the values of ${T_1}$ in the above equation, we get
$2\left( {\dfrac{{5{T_2}}}{4}} \right) - 3{T_2} - 150 = 0$
$ \Rightarrow \,5{T_2} - 6{T_2} - 300 = 0$
$ \Rightarrow \, - {T_2} = 300$
Taking magnitude, we get
${T_2} = 300\,K$
Now, we will calculate the value of ${T_1}$ by putting the value of ${T_2}$ as shown below
${T_1} = \dfrac{{5 \times 300}}{4}$
$ \Rightarrow \,{T_1} = 375\,K$
Which is the required temperature.
Hence, the temperature of the sink will be $375\,K$.
So, the correct answer is “Option B”.
Note:
The efficiency of the Carnot engine can never be $100\% $ because if the efficiency will be $100\% $ then $\eta = 1$ , therefore, we will get ${Q_2} = 0$ which means that the heat from the source can be converted to work done. Therefore the temperature of the sink will be greater than unity which is a violation of the second law of thermodynamics. Hence, the efficiency of the Carnot engine can never be $100\% $.
Complete step by step answer:
We know that the efficiency of the Carnot engine is defined as the ratio of the work done to obtain the output from the engine to the heat supplied to the engine and is given by
$\eta = \dfrac{W}{{{Q_1}}}$
$ \Rightarrow\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}$
$ \Rightarrow\eta = 1 - \dfrac{{{Q_2}}}{{{Q_1}}}$
Also, we can show that
$\dfrac{{{Q_2}}}{{{Q_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$
Therefore, the efficiency of the Carnot engine will become
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Now, the efficiency of the Carnot engine is $\dfrac{1}{5}$ as given in the question.
Therefore, $\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{5} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 5{T_1} - 5{T_2}$
$ \Rightarrow \,4{T_1} = 5{T_2}$
$ \Rightarrow \,{T_1} = \dfrac{{5{T_2}}}{4}$
Now, it is given in the question that when the temperature is reduced to $50\,K$, the efficiency of the Carnot engine will become $\dfrac{1}{3}$, hence, we will take the temperature ${T_2}$ as ${T_2} - 50$ .
Therefore, $\dfrac{1}{3} = 1 - \dfrac{{{T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{3} = \dfrac{{{T_1} - {T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 3{T_1} - 3{T_2} - 150$
$ \Rightarrow \,2{T_1} - 3{T_2} - 150 = 0$
Now, putting the values of ${T_1}$ in the above equation, we get
$2\left( {\dfrac{{5{T_2}}}{4}} \right) - 3{T_2} - 150 = 0$
$ \Rightarrow \,5{T_2} - 6{T_2} - 300 = 0$
$ \Rightarrow \, - {T_2} = 300$
Taking magnitude, we get
${T_2} = 300\,K$
Now, we will calculate the value of ${T_1}$ by putting the value of ${T_2}$ as shown below
${T_1} = \dfrac{{5 \times 300}}{4}$
$ \Rightarrow \,{T_1} = 375\,K$
Which is the required temperature.
Hence, the temperature of the sink will be $375\,K$.
So, the correct answer is “Option B”.
Note:
The efficiency of the Carnot engine can never be $100\% $ because if the efficiency will be $100\% $ then $\eta = 1$ , therefore, we will get ${Q_2} = 0$ which means that the heat from the source can be converted to work done. Therefore the temperature of the sink will be greater than unity which is a violation of the second law of thermodynamics. Hence, the efficiency of the Carnot engine can never be $100\% $.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers