![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A Carnot engine has efficiency $\dfrac{1}{5}$ . Efficiency becomes $\dfrac{1}{3}$ when temperature of the sink is decreased by $50K$. What is the temperature of sink?
A. $325\,K$
B. $375\,K$
C. $300\,K$
D. $350\,K$
Answer
461.4k+ views
Hint: Here we will use the formula of the efficiency of the Carnot engine to calculate the temperature of the sink. Here, we will calculate the temperature ${T_1}$ in terms of ${T_2}$ , and then we will calculate the value of ${T_2}$ by substitution method. After calculating the value of ${T_2}$, we will put it in the equation of ${T_1}$ to calculate the temperature of the sink ${T_1}$ .
Complete step by step answer:
We know that the efficiency of the Carnot engine is defined as the ratio of the work done to obtain the output from the engine to the heat supplied to the engine and is given by
$\eta = \dfrac{W}{{{Q_1}}}$
$ \Rightarrow\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}$
$ \Rightarrow\eta = 1 - \dfrac{{{Q_2}}}{{{Q_1}}}$
Also, we can show that
$\dfrac{{{Q_2}}}{{{Q_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$
Therefore, the efficiency of the Carnot engine will become
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Now, the efficiency of the Carnot engine is $\dfrac{1}{5}$ as given in the question.
Therefore, $\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{5} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 5{T_1} - 5{T_2}$
$ \Rightarrow \,4{T_1} = 5{T_2}$
$ \Rightarrow \,{T_1} = \dfrac{{5{T_2}}}{4}$
Now, it is given in the question that when the temperature is reduced to $50\,K$, the efficiency of the Carnot engine will become $\dfrac{1}{3}$, hence, we will take the temperature ${T_2}$ as ${T_2} - 50$ .
Therefore, $\dfrac{1}{3} = 1 - \dfrac{{{T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{3} = \dfrac{{{T_1} - {T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 3{T_1} - 3{T_2} - 150$
$ \Rightarrow \,2{T_1} - 3{T_2} - 150 = 0$
Now, putting the values of ${T_1}$ in the above equation, we get
$2\left( {\dfrac{{5{T_2}}}{4}} \right) - 3{T_2} - 150 = 0$
$ \Rightarrow \,5{T_2} - 6{T_2} - 300 = 0$
$ \Rightarrow \, - {T_2} = 300$
Taking magnitude, we get
${T_2} = 300\,K$
Now, we will calculate the value of ${T_1}$ by putting the value of ${T_2}$ as shown below
${T_1} = \dfrac{{5 \times 300}}{4}$
$ \Rightarrow \,{T_1} = 375\,K$
Which is the required temperature.
Hence, the temperature of the sink will be $375\,K$.
So, the correct answer is “Option B”.
Note:
The efficiency of the Carnot engine can never be $100\% $ because if the efficiency will be $100\% $ then $\eta = 1$ , therefore, we will get ${Q_2} = 0$ which means that the heat from the source can be converted to work done. Therefore the temperature of the sink will be greater than unity which is a violation of the second law of thermodynamics. Hence, the efficiency of the Carnot engine can never be $100\% $.
Complete step by step answer:
We know that the efficiency of the Carnot engine is defined as the ratio of the work done to obtain the output from the engine to the heat supplied to the engine and is given by
$\eta = \dfrac{W}{{{Q_1}}}$
$ \Rightarrow\eta = \dfrac{{{Q_1} - {Q_2}}}{{{Q_1}}}$
$ \Rightarrow\eta = 1 - \dfrac{{{Q_2}}}{{{Q_1}}}$
Also, we can show that
$\dfrac{{{Q_2}}}{{{Q_1}}} = \dfrac{{{T_2}}}{{{T_1}}}$
Therefore, the efficiency of the Carnot engine will become
$\eta = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
Now, the efficiency of the Carnot engine is $\dfrac{1}{5}$ as given in the question.
Therefore, $\dfrac{1}{5} = 1 - \dfrac{{{T_2}}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{5} = \dfrac{{{T_1} - {T_2}}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 5{T_1} - 5{T_2}$
$ \Rightarrow \,4{T_1} = 5{T_2}$
$ \Rightarrow \,{T_1} = \dfrac{{5{T_2}}}{4}$
Now, it is given in the question that when the temperature is reduced to $50\,K$, the efficiency of the Carnot engine will become $\dfrac{1}{3}$, hence, we will take the temperature ${T_2}$ as ${T_2} - 50$ .
Therefore, $\dfrac{1}{3} = 1 - \dfrac{{{T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,\dfrac{1}{3} = \dfrac{{{T_1} - {T_2} - 50}}{{{T_1}}}$
$ \Rightarrow \,{T_1} = 3{T_1} - 3{T_2} - 150$
$ \Rightarrow \,2{T_1} - 3{T_2} - 150 = 0$
Now, putting the values of ${T_1}$ in the above equation, we get
$2\left( {\dfrac{{5{T_2}}}{4}} \right) - 3{T_2} - 150 = 0$
$ \Rightarrow \,5{T_2} - 6{T_2} - 300 = 0$
$ \Rightarrow \, - {T_2} = 300$
Taking magnitude, we get
${T_2} = 300\,K$
Now, we will calculate the value of ${T_1}$ by putting the value of ${T_2}$ as shown below
${T_1} = \dfrac{{5 \times 300}}{4}$
$ \Rightarrow \,{T_1} = 375\,K$
Which is the required temperature.
Hence, the temperature of the sink will be $375\,K$.
So, the correct answer is “Option B”.
Note:
The efficiency of the Carnot engine can never be $100\% $ because if the efficiency will be $100\% $ then $\eta = 1$ , therefore, we will get ${Q_2} = 0$ which means that the heat from the source can be converted to work done. Therefore the temperature of the sink will be greater than unity which is a violation of the second law of thermodynamics. Hence, the efficiency of the Carnot engine can never be $100\% $.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Physics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Chemistry: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)