A certain compound ( $X$ ) shows the following reaction:
(i) When $KI$ is added to an aqueous solution of $X$ containing acetic acid, Iodine is liberated.
(ii) When $C{O_2}$ is passed through an aqueous suspension of $X$ , the turbidity transforms into a precipitate .
(iii) When a paste of $X$ in water is heated with ethyl alcohol, a product of anaesthetic is obtained.
Identify $X$
A.$CaOC{l_2}$
B.$PbC{l_2}$
C.$CaC{l_2}$
D.None of these
Answer
Verified
463.5k+ views
Hint: The reaction between $KI$ and $X$ which liberates Iodine is an oxidation reaction. Hence $X$ must have oxygen as an atom in the molecular structure.
-Formation of turbidity with $C{O_2}$ in solvent is a characteristic test used to determine the presence of Calcium in the solvent.
Complete step by step solution:
Let us go over the reactions one by one and eliminate the options simultaneously by the data we collect.
In the first reaction we have been given information, that $KI$ on treatment with $X$ liberates Iodine gas.
Iodine is in a $ - 1$ oxidation state in $KI$ and the oxidation state changes to $0$in Iodine Gas.
This means there is an oxidation reaction taking place, or in other words, there is an oxidising agent in the reaction. On reaction with acetic acid, Metal Anhydride ${(C{H_3}COO)_2}M$ should be formed along with chlorine gas to be liberated.
$CaOC{l_2} + 2C{H_3}COOH\xrightarrow{{}}{(C{H_3}COO)_2}Ca + C{l_2} + {H_2}O$
This Chlorine Gas liberates, displaces iodine from potassium iodine to liberate iodine gas.
$C{l_2} + 2KI\xrightarrow{{}}2KCl + {I_2}$
Turbidity formation by adding $C{O_2}$ is due to the formation of metal carbonate salt. In water,
$X$ gets converted into its hydroxide form and reacts with carbon dioxide to form metal carbonate.
$CaOC{l_2} + {H_2}O\xrightarrow{{}}Ca{(OH)_2} + C{l_2}$
Then this hydroxide reacts with the Carbon Dioxide to warm metal carbonate salt.
$Ca{(OH)_2} + C{O_2}\xrightarrow{{}}CaC{O_3} + C{l_2}$
The white precipitate is of Calcium Carbonate.
In the third reaction , $X$ react with water to form metal hydroxide
$CaOC{l_2} + {H_2}O\xrightarrow{{}}Ca{(OH)_2} + C{l_2}$
Then the product formed reacts with ethyl alcohol to form:
$C{H_3}C{H_2}OH + C{l_2} + Ca{(OH)_2}\xrightarrow{{}}CHC{l_3} + {(HCOO)_2}Ca + CaC{l_2} + {H_2}O$
Here, $CHC{l_3}$ is the anaesthetic, it is called chloroform and was used in surgeries before modern anaesthetics were developed.
Hence Option 1 is correct.
Note:
-Lead anhydride does not form at normal temperature conditions, since lead is a weak metal, it needs an external energy to help form hydroxide, like temperature and catalyst.
-Only Calcium Hypochlorite $CaOC{l_2}$ can form chloroform with ethyl alcohol as it’s a mixture of lime $CaC{O_3}$ and calcium chloride $CaC{l_2}$.
-Formation of turbidity with $C{O_2}$ in solvent is a characteristic test used to determine the presence of Calcium in the solvent.
Complete step by step solution:
Let us go over the reactions one by one and eliminate the options simultaneously by the data we collect.
In the first reaction we have been given information, that $KI$ on treatment with $X$ liberates Iodine gas.
Iodine is in a $ - 1$ oxidation state in $KI$ and the oxidation state changes to $0$in Iodine Gas.
This means there is an oxidation reaction taking place, or in other words, there is an oxidising agent in the reaction. On reaction with acetic acid, Metal Anhydride ${(C{H_3}COO)_2}M$ should be formed along with chlorine gas to be liberated.
$CaOC{l_2} + 2C{H_3}COOH\xrightarrow{{}}{(C{H_3}COO)_2}Ca + C{l_2} + {H_2}O$
This Chlorine Gas liberates, displaces iodine from potassium iodine to liberate iodine gas.
$C{l_2} + 2KI\xrightarrow{{}}2KCl + {I_2}$
Turbidity formation by adding $C{O_2}$ is due to the formation of metal carbonate salt. In water,
$X$ gets converted into its hydroxide form and reacts with carbon dioxide to form metal carbonate.
$CaOC{l_2} + {H_2}O\xrightarrow{{}}Ca{(OH)_2} + C{l_2}$
Then this hydroxide reacts with the Carbon Dioxide to warm metal carbonate salt.
$Ca{(OH)_2} + C{O_2}\xrightarrow{{}}CaC{O_3} + C{l_2}$
The white precipitate is of Calcium Carbonate.
In the third reaction , $X$ react with water to form metal hydroxide
$CaOC{l_2} + {H_2}O\xrightarrow{{}}Ca{(OH)_2} + C{l_2}$
Then the product formed reacts with ethyl alcohol to form:
$C{H_3}C{H_2}OH + C{l_2} + Ca{(OH)_2}\xrightarrow{{}}CHC{l_3} + {(HCOO)_2}Ca + CaC{l_2} + {H_2}O$
Here, $CHC{l_3}$ is the anaesthetic, it is called chloroform and was used in surgeries before modern anaesthetics were developed.
Hence Option 1 is correct.
Note:
-Lead anhydride does not form at normal temperature conditions, since lead is a weak metal, it needs an external energy to help form hydroxide, like temperature and catalyst.
-Only Calcium Hypochlorite $CaOC{l_2}$ can form chloroform with ethyl alcohol as it’s a mixture of lime $CaC{O_3}$ and calcium chloride $CaC{l_2}$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE