Answer
Verified
441.3k+ views
Hint: To solve this question, we have to differentiate the general equation of wave with respect to time to get the expression for the velocity amplitude. Then we have to find out the values of the angular frequency and the velocity amplitude from the given graph. Substituting these values in the expression for the velocity amplitude, we will get the required value of the amplitude of the motion.
Formula used: The formula used to solve this question is given by
$ f = \dfrac{1}{T} $ , here $ f $ is the frequency, and $ T $ is the time period.
$ \omega = 2\pi f $ , here $ \omega $ is the angular frequency, and $ f $ is the frequency.
Complete step-by-step solution:
Let the amplitude of the motion of the given transverse wave be $ A $ . Also, let $ \omega $ be its angular frequency, and $ k $ be its wave number.
Since the wave is sinusoidal, so we can assume the equation of the given transverse wave in space and time coordinates as
$ y\left( {x,t} \right) = A\sin \left( {\omega t - kx + \varphi } \right) $ .............................(1)
Now, we know that the transverse velocity of the particles is given by
$ v = \dfrac{{\delta y}}{{\delta t}} $
Therefore, we differentiate (1) partially with respect to the time $ t $ on both the sides to get
$ v\left( {x,t} \right) = \omega A\cos \left( {\omega t - kx + \varphi } \right) $
According to the question, we have $ x = 0 $ . Substituting this above, we get
$ v\left( {x,t} \right) = \omega A\cos \left( {\omega t + \varphi } \right) $ .............................(2)
From the above relation, we can observe that the amplitude of the transverse velocity of the particle is equal to $ \omega A $ . From the given graph, we can easily observe that the amplitude of the transverse velocity of the particle is equal to $ 5cm/s $ . So we can say that
$ \omega A = 5 $ .............................(3)
From the given graph we can also observe that one cycle of the transverse velocity is being completed in $ 4s $ . So the time period of the given transverse wave can be written as
$ T = 4s $ .............................(4)
Now, we know that the frequency is related to the time period by the relation
$ f = \dfrac{1}{T} $
Putting (4) in the above equation, we get
$ f = \dfrac{1}{4}Hz $
Now, the angular frequency is given by
$ \omega = 2\pi f $
$ \Rightarrow \omega = 2\pi \left( {\dfrac{1}{4}} \right) $
On solving we get
$ \omega = \dfrac{\pi }{2}rad/s $ .............................(5)
Putting (5) in (3) we have
$ A\left( {\dfrac{\pi }{2}} \right) = 5 $
$ \Rightarrow A = \dfrac{{10}}{\pi }cm $
Thus, the amplitude of the motion is equal to $ \dfrac{{10}}{\pi }cm $ .
Hence, the correct answer is option C.
Note
Do not be confused between particle velocity and the wave velocity. The particle velocity is the velocity of the particles of the mediums in which the wave is propagating. But the wave velocity is the velocity of a crest, a trough, or any point on the wave.
Formula used: The formula used to solve this question is given by
$ f = \dfrac{1}{T} $ , here $ f $ is the frequency, and $ T $ is the time period.
$ \omega = 2\pi f $ , here $ \omega $ is the angular frequency, and $ f $ is the frequency.
Complete step-by-step solution:
Let the amplitude of the motion of the given transverse wave be $ A $ . Also, let $ \omega $ be its angular frequency, and $ k $ be its wave number.
Since the wave is sinusoidal, so we can assume the equation of the given transverse wave in space and time coordinates as
$ y\left( {x,t} \right) = A\sin \left( {\omega t - kx + \varphi } \right) $ .............................(1)
Now, we know that the transverse velocity of the particles is given by
$ v = \dfrac{{\delta y}}{{\delta t}} $
Therefore, we differentiate (1) partially with respect to the time $ t $ on both the sides to get
$ v\left( {x,t} \right) = \omega A\cos \left( {\omega t - kx + \varphi } \right) $
According to the question, we have $ x = 0 $ . Substituting this above, we get
$ v\left( {x,t} \right) = \omega A\cos \left( {\omega t + \varphi } \right) $ .............................(2)
From the above relation, we can observe that the amplitude of the transverse velocity of the particle is equal to $ \omega A $ . From the given graph, we can easily observe that the amplitude of the transverse velocity of the particle is equal to $ 5cm/s $ . So we can say that
$ \omega A = 5 $ .............................(3)
From the given graph we can also observe that one cycle of the transverse velocity is being completed in $ 4s $ . So the time period of the given transverse wave can be written as
$ T = 4s $ .............................(4)
Now, we know that the frequency is related to the time period by the relation
$ f = \dfrac{1}{T} $
Putting (4) in the above equation, we get
$ f = \dfrac{1}{4}Hz $
Now, the angular frequency is given by
$ \omega = 2\pi f $
$ \Rightarrow \omega = 2\pi \left( {\dfrac{1}{4}} \right) $
On solving we get
$ \omega = \dfrac{\pi }{2}rad/s $ .............................(5)
Putting (5) in (3) we have
$ A\left( {\dfrac{\pi }{2}} \right) = 5 $
$ \Rightarrow A = \dfrac{{10}}{\pi }cm $
Thus, the amplitude of the motion is equal to $ \dfrac{{10}}{\pi }cm $ .
Hence, the correct answer is option C.
Note
Do not be confused between particle velocity and the wave velocity. The particle velocity is the velocity of the particles of the mediums in which the wave is propagating. But the wave velocity is the velocity of a crest, a trough, or any point on the wave.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE