
A combination of parallel plate capacitors is maintained at a certain potential difference. When a $3mm$ thick slab is introduced between all the plates, in order to maintain the same potential difference, the distance between the plates is increased by $2.4mm$. Find the dielectric constant of the slab.

A. $4$
B. $5$
C. $3$
D. $6$
Answer
131.4k+ views
Hint Find the equivalent capacitance both with and without the slab between the plates and equate them. Use suitable formula to establish the expression for capacitance.
Formulas used:
$C = \dfrac{{{\varepsilon _0}A}}{d}$ where $d$ is the distance between the capacitance plates, $A$ is the area of the plates and ${\varepsilon _0}$ is the permittivity of free space.
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the distance between the capacitor plates, $t$ is the thickness of the slab introduced.
Complete step by step answer
A capacitor is a system of conductors and dielectric that can store electric charge. It consists of two conductors containing equal and opposite charges and has a potential difference $V$ between them.
The potential difference between the conductors is proportional to the charge on the capacitor and is given by the relation $Q = CV$where $Q$ is the charge on the positive conductor and $C$ is called the capacitance.
Now, we know that the potential difference between the two plates is given by, $V = E \times d$ where $d$ is the distance between the two plates.
Thus, substituting the value of $V$ in the equation$Q = CV$, we get,
$Q = CEd$
Putting $E = \dfrac{\sigma }{{{\varepsilon _0}}}$ and $\sigma = \dfrac{Q}{A}$ where $A$ is the area of the capacitor plate, we get
$Q = C \times \dfrac{Q}{{A{\varepsilon _0}}} \times d$
$ \Rightarrow C = \dfrac{{A{\varepsilon _0}}}{d}$ where $C$ be the equivalent capacitance between terminals A and B.
Now, introducing a slab of thickness $t$, the resultant capacitance $C'$ becomes
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the new distance between the capacitor plates.
Now, since the potential difference remains same, the capacitance must also not vary
So, $C = C'$
$ \Rightarrow \dfrac{{A{\varepsilon _0}}}{d} = \dfrac{{A{\varepsilon _0}}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$
$
\Rightarrow d = d' - t\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow d = d + 2.4 - 3\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow 2.4 - 3 + \dfrac{3}{K} = 0 \\
\Rightarrow \dfrac{3}{K} = 0.6 \\
\Rightarrow K = 5 \\
$
Therefore, the correct option is B.
Note:To establish the capacitance of an isolated single conductor, we assume the conductor to be a part of a capacitor whose other conductor is at infinity.
Formulas used:
$C = \dfrac{{{\varepsilon _0}A}}{d}$ where $d$ is the distance between the capacitance plates, $A$ is the area of the plates and ${\varepsilon _0}$ is the permittivity of free space.
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the distance between the capacitor plates, $t$ is the thickness of the slab introduced.
Complete step by step answer
A capacitor is a system of conductors and dielectric that can store electric charge. It consists of two conductors containing equal and opposite charges and has a potential difference $V$ between them.
The potential difference between the conductors is proportional to the charge on the capacitor and is given by the relation $Q = CV$where $Q$ is the charge on the positive conductor and $C$ is called the capacitance.
Now, we know that the potential difference between the two plates is given by, $V = E \times d$ where $d$ is the distance between the two plates.
Thus, substituting the value of $V$ in the equation$Q = CV$, we get,
$Q = CEd$
Putting $E = \dfrac{\sigma }{{{\varepsilon _0}}}$ and $\sigma = \dfrac{Q}{A}$ where $A$ is the area of the capacitor plate, we get
$Q = C \times \dfrac{Q}{{A{\varepsilon _0}}} \times d$
$ \Rightarrow C = \dfrac{{A{\varepsilon _0}}}{d}$ where $C$ be the equivalent capacitance between terminals A and B.
Now, introducing a slab of thickness $t$, the resultant capacitance $C'$ becomes
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the new distance between the capacitor plates.
Now, since the potential difference remains same, the capacitance must also not vary
So, $C = C'$
$ \Rightarrow \dfrac{{A{\varepsilon _0}}}{d} = \dfrac{{A{\varepsilon _0}}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$
$
\Rightarrow d = d' - t\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow d = d + 2.4 - 3\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow 2.4 - 3 + \dfrac{3}{K} = 0 \\
\Rightarrow \dfrac{3}{K} = 0.6 \\
\Rightarrow K = 5 \\
$
Therefore, the correct option is B.
Note:To establish the capacitance of an isolated single conductor, we assume the conductor to be a part of a capacitor whose other conductor is at infinity.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
