A combination of parallel plate capacitors is maintained at a certain potential difference. When a $3mm$ thick slab is introduced between all the plates, in order to maintain the same potential difference, the distance between the plates is increased by $2.4mm$. Find the dielectric constant of the slab.
A. $4$
B. $5$
C. $3$
D. $6$
Answer
Verified
116.4k+ views
Hint Find the equivalent capacitance both with and without the slab between the plates and equate them. Use suitable formula to establish the expression for capacitance.
Formulas used:
$C = \dfrac{{{\varepsilon _0}A}}{d}$ where $d$ is the distance between the capacitance plates, $A$ is the area of the plates and ${\varepsilon _0}$ is the permittivity of free space.
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the distance between the capacitor plates, $t$ is the thickness of the slab introduced.
Complete step by step answer
A capacitor is a system of conductors and dielectric that can store electric charge. It consists of two conductors containing equal and opposite charges and has a potential difference $V$ between them.
The potential difference between the conductors is proportional to the charge on the capacitor and is given by the relation $Q = CV$where $Q$ is the charge on the positive conductor and $C$ is called the capacitance.
Now, we know that the potential difference between the two plates is given by, $V = E \times d$ where $d$ is the distance between the two plates.
Thus, substituting the value of $V$ in the equation$Q = CV$, we get,
$Q = CEd$
Putting $E = \dfrac{\sigma }{{{\varepsilon _0}}}$ and $\sigma = \dfrac{Q}{A}$ where $A$ is the area of the capacitor plate, we get
$Q = C \times \dfrac{Q}{{A{\varepsilon _0}}} \times d$
$ \Rightarrow C = \dfrac{{A{\varepsilon _0}}}{d}$ where $C$ be the equivalent capacitance between terminals A and B.
Now, introducing a slab of thickness $t$, the resultant capacitance $C'$ becomes
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the new distance between the capacitor plates.
Now, since the potential difference remains same, the capacitance must also not vary
So, $C = C'$
$ \Rightarrow \dfrac{{A{\varepsilon _0}}}{d} = \dfrac{{A{\varepsilon _0}}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$
$
\Rightarrow d = d' - t\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow d = d + 2.4 - 3\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow 2.4 - 3 + \dfrac{3}{K} = 0 \\
\Rightarrow \dfrac{3}{K} = 0.6 \\
\Rightarrow K = 5 \\
$
Therefore, the correct option is B.
Note:To establish the capacitance of an isolated single conductor, we assume the conductor to be a part of a capacitor whose other conductor is at infinity.
Formulas used:
$C = \dfrac{{{\varepsilon _0}A}}{d}$ where $d$ is the distance between the capacitance plates, $A$ is the area of the plates and ${\varepsilon _0}$ is the permittivity of free space.
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the distance between the capacitor plates, $t$ is the thickness of the slab introduced.
Complete step by step answer
A capacitor is a system of conductors and dielectric that can store electric charge. It consists of two conductors containing equal and opposite charges and has a potential difference $V$ between them.
The potential difference between the conductors is proportional to the charge on the capacitor and is given by the relation $Q = CV$where $Q$ is the charge on the positive conductor and $C$ is called the capacitance.
Now, we know that the potential difference between the two plates is given by, $V = E \times d$ where $d$ is the distance between the two plates.
Thus, substituting the value of $V$ in the equation$Q = CV$, we get,
$Q = CEd$
Putting $E = \dfrac{\sigma }{{{\varepsilon _0}}}$ and $\sigma = \dfrac{Q}{A}$ where $A$ is the area of the capacitor plate, we get
$Q = C \times \dfrac{Q}{{A{\varepsilon _0}}} \times d$
$ \Rightarrow C = \dfrac{{A{\varepsilon _0}}}{d}$ where $C$ be the equivalent capacitance between terminals A and B.
Now, introducing a slab of thickness $t$, the resultant capacitance $C'$ becomes
$C' = \dfrac{{{\varepsilon _0}A}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$ where $K$ is the relative permittivity of the material of the slab and $d'$is the new distance between the capacitor plates.
Now, since the potential difference remains same, the capacitance must also not vary
So, $C = C'$
$ \Rightarrow \dfrac{{A{\varepsilon _0}}}{d} = \dfrac{{A{\varepsilon _0}}}{{d' - t\left( {1 - \dfrac{1}{K}} \right)}}$
$
\Rightarrow d = d' - t\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow d = d + 2.4 - 3\left( {1 - \dfrac{1}{K}} \right) \\
\Rightarrow 2.4 - 3 + \dfrac{3}{K} = 0 \\
\Rightarrow \dfrac{3}{K} = 0.6 \\
\Rightarrow K = 5 \\
$
Therefore, the correct option is B.
Note:To establish the capacitance of an isolated single conductor, we assume the conductor to be a part of a capacitor whose other conductor is at infinity.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment