![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A convex mirror and a concave mirror of radius \[10cm\] each are placed \[15cm\] apart facing each other. An object is kept midway between them. If the reflection first takes place in the concave mirror and then occurs in convex mirror, the position of the final image will be,
A. on the pole of the convex mirror.
B. on the pole of the concave mirror.
C. at a distance of \[10cm\]from the convex mirror.
D. at a distance of \[5cm\] from the convex mirror.
Answer
479.1k+ views
Hint: First of all draw the diagram as per the conditions mentioned in the question. Then find out the image position when the light initially passes through the concave mirror. This will be taken as the object distance for the convex mirror. Calculate the final image distance from the convex mirror using the mirror equation. This will help you to solve this question.
Complete step-by-step answer:
First of all let us draw the ray diagram.
The values of the terms as per mentioned in the question are,
The radius of curvature of the convex and concave mirror is given as,
\[R=10cm\]
Therefore the focal length will be the half of the radius of curvature.
\[f=\dfrac{R}{2}=5cm\]
Distance between the mirrors is,
\[d=15cm\]
First of all light is falling on the convex mirror. So let us calculate the image distance from this,
As the object is placed midway between the mirrors we can write that the object distance to the concave mirror will be,
\[u=-7.5cm\](As per sign convention)
And the focal length will be,
\[f=-5cm\]
Using mirror equation, we can write that,
\[\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}\]
Substituting the values in it,
\[\dfrac{1}{v}-\dfrac{1}{7.5}=\dfrac{1}{-5}\]
Therefore,
\[\begin{align}
& \dfrac{1}{v}=\dfrac{2}{15}+\dfrac{1}{-5}=\dfrac{5}{-75} \\
& v=-15cm \\
\end{align}\]
Which means the image of the concave mirror will be falling on the pole of the convex mirror.
Therefore the object distance for the convex mirror will be,
\[u=0cm\]
And the focal length will be,
\[f=+5cm\]
Substituting these in the mirror equation will give,
\[\begin{align}
& \dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f} \\
& \dfrac{1}{v}+\dfrac{1}{0}=\dfrac{1}{5} \\
& v=0cm \\
\end{align}\]
Therefore the final image will be on the pole of the convex mirror. Hence the correct answer is option A.
Note: Sign convention is an important point to be noted when we solve this type of problem. A quantity is taken as positive if the direction of the position of the quantity is in the same direction of incident ray. In the same way, a quantity is given a negative sign when it is in the opposite direction of the incident ray.
Complete step-by-step answer:
First of all let us draw the ray diagram.
![seo images](https://www.vedantu.com/question-sets/75cc36ae-0ac1-407e-a36d-d81a615a6deb7766010681679006159.png)
The values of the terms as per mentioned in the question are,
The radius of curvature of the convex and concave mirror is given as,
\[R=10cm\]
Therefore the focal length will be the half of the radius of curvature.
\[f=\dfrac{R}{2}=5cm\]
Distance between the mirrors is,
\[d=15cm\]
First of all light is falling on the convex mirror. So let us calculate the image distance from this,
As the object is placed midway between the mirrors we can write that the object distance to the concave mirror will be,
\[u=-7.5cm\](As per sign convention)
And the focal length will be,
\[f=-5cm\]
Using mirror equation, we can write that,
\[\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}\]
Substituting the values in it,
\[\dfrac{1}{v}-\dfrac{1}{7.5}=\dfrac{1}{-5}\]
Therefore,
\[\begin{align}
& \dfrac{1}{v}=\dfrac{2}{15}+\dfrac{1}{-5}=\dfrac{5}{-75} \\
& v=-15cm \\
\end{align}\]
Which means the image of the concave mirror will be falling on the pole of the convex mirror.
Therefore the object distance for the convex mirror will be,
\[u=0cm\]
And the focal length will be,
\[f=+5cm\]
Substituting these in the mirror equation will give,
\[\begin{align}
& \dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f} \\
& \dfrac{1}{v}+\dfrac{1}{0}=\dfrac{1}{5} \\
& v=0cm \\
\end{align}\]
Therefore the final image will be on the pole of the convex mirror. Hence the correct answer is option A.
Note: Sign convention is an important point to be noted when we solve this type of problem. A quantity is taken as positive if the direction of the position of the quantity is in the same direction of incident ray. In the same way, a quantity is given a negative sign when it is in the opposite direction of the incident ray.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Express the following as a fraction and simplify a class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The length and width of a rectangle are in ratio of class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The ratio of the income to the expenditure of a family class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you write 025 million in scientific notatio class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How do you convert 295 meters per second to kilometers class 7 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)