A cricket ball of mass $200g$ moving with velocity $15m{s^{ - 1}}$ is brought to rest by a player in $0.05s$. What is the impulse of the ball and average force exerted by the player?
Answer
Verified
443.7k+ views
Hint: Impulse is defined as the difference between the final momentum and the initial momentum of any object. In other words change in momentum is also known as Impulse.
Complete step by step answer:
Momentum is a measurement of mass in motion. It measures how much motion the mass is carrying during that time period. Whereas impulse is the term that quantifies the overall effect of a force acting over time. It measures the motion that the mass is carrying over an infinitesimally small period of time.In Newtonian mechanics, Impulse \[\left( J \right)\] is defined as the integral of a force$\left( F \right)$ over the time interval $\left( t \right)$ for which it acts. Which means,
$\vec J = \int\limits_0^t {\vec F.dt} $
Since force is a vector quantity, impulse is also a vector quantity. In simple terms, impulse is defined as the change in momentum that occurs in an object. Which means,
$\overrightarrow J = \Delta \overrightarrow p $
This equation is known as the impulse-momentum theorem. It helps relate both the quantities.
$ \Rightarrow \vec J = \overrightarrow {{p_f}} - \overrightarrow {{p_i}} $
$ \Rightarrow \overrightarrow J = m\overrightarrow v - m\overrightarrow u $
$ \Rightarrow \overrightarrow J = m\left( {\overrightarrow v - \overrightarrow u } \right)$
Where, $\overrightarrow {{p_f}} = $Final momentum of body,$\overrightarrow {{p_i}} = $Initial momentum of body,$m = $Mass of the ball$ = 200g = 0.2kg$ and $\overrightarrow v = $Final velocity of the ball$ = 0m{s^{ - 1}}$.
$\overrightarrow u = $Initial velocity of the ball$ = 15m{s^{ - 1}}$.
So,
$\overrightarrow J = 0.2\left( {0 - 15} \right)$
$\therefore \overrightarrow J = - 3Ns$
Therefore the impulse generated by the cricket ball is $ - 3Ns$.
Now, we know that,
$\overrightarrow F = m\overrightarrow a $
$\overrightarrow F = m\dfrac{{\overrightarrow v - \overrightarrow u }}{t}$
$ \Rightarrow \overrightarrow F = 0.2 \times \dfrac{{0 - 15}}{{0.05}}$
$\therefore \overrightarrow F = - 60N$
Therefore the force applied is $ - 60N$.
Note:Impulse gives us an idea about a very large force applied over a very small amount of time. Impulse is otherwise also known as impact. This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time. The best examples for impulse are hitting a ball with a bat, body falling from the sky, or any collision.
Complete step by step answer:
Momentum is a measurement of mass in motion. It measures how much motion the mass is carrying during that time period. Whereas impulse is the term that quantifies the overall effect of a force acting over time. It measures the motion that the mass is carrying over an infinitesimally small period of time.In Newtonian mechanics, Impulse \[\left( J \right)\] is defined as the integral of a force$\left( F \right)$ over the time interval $\left( t \right)$ for which it acts. Which means,
$\vec J = \int\limits_0^t {\vec F.dt} $
Since force is a vector quantity, impulse is also a vector quantity. In simple terms, impulse is defined as the change in momentum that occurs in an object. Which means,
$\overrightarrow J = \Delta \overrightarrow p $
This equation is known as the impulse-momentum theorem. It helps relate both the quantities.
$ \Rightarrow \vec J = \overrightarrow {{p_f}} - \overrightarrow {{p_i}} $
$ \Rightarrow \overrightarrow J = m\overrightarrow v - m\overrightarrow u $
$ \Rightarrow \overrightarrow J = m\left( {\overrightarrow v - \overrightarrow u } \right)$
Where, $\overrightarrow {{p_f}} = $Final momentum of body,$\overrightarrow {{p_i}} = $Initial momentum of body,$m = $Mass of the ball$ = 200g = 0.2kg$ and $\overrightarrow v = $Final velocity of the ball$ = 0m{s^{ - 1}}$.
$\overrightarrow u = $Initial velocity of the ball$ = 15m{s^{ - 1}}$.
So,
$\overrightarrow J = 0.2\left( {0 - 15} \right)$
$\therefore \overrightarrow J = - 3Ns$
Therefore the impulse generated by the cricket ball is $ - 3Ns$.
Now, we know that,
$\overrightarrow F = m\overrightarrow a $
$\overrightarrow F = m\dfrac{{\overrightarrow v - \overrightarrow u }}{t}$
$ \Rightarrow \overrightarrow F = 0.2 \times \dfrac{{0 - 15}}{{0.05}}$
$\therefore \overrightarrow F = - 60N$
Therefore the force applied is $ - 60N$.
Note:Impulse gives us an idea about a very large force applied over a very small amount of time. Impulse is otherwise also known as impact. This type of impulse is often idealized so that the change in momentum produced by the force happens with no change in time. The best examples for impulse are hitting a ball with a bat, body falling from the sky, or any collision.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE