Answer
Verified
497.7k+ views
Hint: If \[x=f(t)\] and \[y=g(t)\] then \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\div \dfrac{dx}{dt}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE