
A curve parametrically given by \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\], where \[t\in R\]. For what value(s) of \[t\] is \[\dfrac{dy}{dx}=\dfrac{1}{2}\]?
(A) \[\dfrac{1}{3}\]
(B) \[2\]
(C) \[3\]
(D) \[1\]
Answer
621k+ views
Hint: If \[x=f(t)\] and \[y=g(t)\] then \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\div \dfrac{dx}{dt}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Complete step-by-step answer:
The given equation of the curve is \[x=t+{{t}^{3}}\]and \[y={{t}^{2}}\].
We can clearly see that \[y\] and \[x\] are not given in terms of each other but in terms of another parameter $t$ . Hence, \[\dfrac{dy}{dx}\] cannot be directly calculated.
So, we can write \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\cdot \dfrac{dt}{dx}.........\]equation\[(1)\]
Now, to find \[\dfrac{dy}{dx}\], we need to find the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\].
Now, we have \[y={{t}^{2}}\]
We will differentiate \[y\] with respect to \[t\].
On differentiating \[y\] with respect to \[t\], we get ,
$\Rightarrow$ \[\dfrac{dy}{dt}=\dfrac{d}{dt}({{t}^{2}})=2t\]
Now, we will differentiate \[x\] with respect to \[t\].
On differentiating \[x\] with respect to \[t\], we get,
$\Rightarrow$ \[\dfrac{dx}{dt}=\dfrac{d}{dt}(t+{{t}^{3}})=1+3{{t}^{2}}\]
Now, we know inverse function theorem of differentiation says that if \[x=f(t)\] and \[\dfrac{dx}{dt}=x'\] then, \[\dfrac{dt}{dx}=t'=\dfrac{1}{x'}\] .
So, we can write \[\dfrac{dt}{dx}=\dfrac{1}{\dfrac{dx}{dt}}=\dfrac{1}{1+3{{t}^{2}}}\]
Now, to find the value of \[\dfrac{dy}{dx}\] , we will substitute the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\].
On substituting the values of \[\dfrac{dy}{dt}\] and \[\dfrac{dt}{dx}\]in equation\[(1)\], we get ,\[\]
$\Rightarrow$ \[\dfrac{dy}{dx}=2t\times \dfrac{1}{1+3{{t}^{2}}}\]
\[=\dfrac{2t}{1+3{{t}^{2}}}\]
Now, it is given that the value of \[\dfrac{dy}{dx}\] is equal to \[\dfrac{1}{2}\].
So, we can write
\[\begin{align}
& \dfrac{2t}{1+3{{t}^{2}}}=\dfrac{1}{2} \\
& \Rightarrow 4t=1+3{{t}^{2}} \\
\end{align}\]
$\Rightarrow$ \[3{{t}^{2}}-4t+1=0\]
Clearly, it is a quadratic equation in \[t\].
Now, we will solve this quadratic equation by factorisation method.
\[3{{t}^{2}}-4t+1=0\]
\[\Rightarrow 3{{t}^{2}}-3t-t+1=0\]
\[\Rightarrow 3t(t-1)-1(t-1)=0\]
\[\Rightarrow (3t-1)(t-1)=0\]
\[\Rightarrow t=\dfrac{1}{3}\]or \[t=1\]
Hence , the values of \[t\] for \[\dfrac{dy}{dx}\] to be equal to \[\dfrac{1}{2}\] are \[\dfrac{1}{3}\] and \[1\].
Answers are options (D), (A).
Note: \[3{{t}^{2}}-4t+1=0\] can alternatively be solved using the quadratic formula.
We know, for a quadratic equation given by \[a{{x}^{2}}+bx+c=0\], the values of \[x\] satisfying the equation are known as the roots of the equation and are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] .
So , \[t=\dfrac{-(-4)\pm \sqrt{{{(-4)}^{2}}-4(3)(1)}}{2(3)}\]
\[\Rightarrow t=\dfrac{4\pm \sqrt{16-12}}{6}\]
\[\Rightarrow t=\dfrac{4\pm 2}{6}\]
\[\Rightarrow t=\dfrac{6}{6},\dfrac{2}{6}\]
\[\Rightarrow t=1,\dfrac{1}{3}\]
Hence, the values of \[t\] satisfying the equation \[3{{t}^{2}}-4t+1=0\] are \[t=1,\dfrac{1}{3}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

