![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A cylinder, a cone and a hemisphere are of the same base and of same height. Find the ratio of their volumes.
Answer
417.1k+ views
Hint:- We had to only write the formula of volume of cylinder, cone and hemisphere with same height and radius and then divide them to get the ratio of their volumes.
Complete step-by-step answer:
As the height and radius of cylinder, cone and hemisphere are the same.
So, let their height be h units.
And their radius is r units.
Now as we know that the height of the hemisphere is the radius of the hemisphere.
So, r = h (because h is the height of all shapes and r is the radius of all shapes)
So, as we know that if h is the height and r is the radius of cylinder then its volume is calculated as \[\pi {r^2}h\]
Let the volume of the cylinder is \[{V_1}\].
So, \[{V_1} = \pi {r^2}h = \pi {r^3}\] (because h = r)
As we know that if h is the height and r is the radius of cone then its volume is calculated as \[\dfrac{1}{3}\pi {r^2}h\]
Let the volume of the cone is \[{V_2}\].
So, \[{V_2} = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {r^3}\] (because h = r)
As we know that if r is the radius of hemisphere then its volume is calculated as \[\dfrac{2}{3}\pi {r^3}\]
Let the volume of the hemisphere is \[{V_3}\].
So, \[{V_3} = \dfrac{2}{3}\pi {r^3}h\]
Now the ratio of the volumes of cylinder, cone and hemisphere is the ratio of \[{V_1}\], \[{V_2}\] and \[{V_3}\].
So, \[{V_1}:{V_2}:{V_3} = \pi {r^3}:\dfrac{1}{3}\pi {r^3}:\dfrac{2}{3}\pi {r^3} = 1:\dfrac{1}{3}:\dfrac{2}{3}\]
On multiplying ratio be 3. We get,
\[{V_1}:{V_2}:{V_3} = 3:1:2\]
Hence, the volume of the cylinder cone and hemisphere are in ratio 3 : 1 : 2.
Note:- Whenever we come up with this type of problem the first, we had to write the formula of all the given shapes using same parameters and the we check whether any parameter is missing in any formula like here in the formula of volume of hemisphere, height is not present but we know that the height of the hemisphere is same as its radius. So, we had to replace height with radius in the formula of volume of all given shapes because they all had the same height and radius. And after that we can easily divide their volume to get the required ratio of their volumes.
Complete step-by-step answer:
![seo images](https://www.vedantu.com/question-sets/aee8f432-8203-4b0f-aaa6-868381fa5b945458391460626775892.png)
As the height and radius of cylinder, cone and hemisphere are the same.
So, let their height be h units.
And their radius is r units.
Now as we know that the height of the hemisphere is the radius of the hemisphere.
So, r = h (because h is the height of all shapes and r is the radius of all shapes)
So, as we know that if h is the height and r is the radius of cylinder then its volume is calculated as \[\pi {r^2}h\]
Let the volume of the cylinder is \[{V_1}\].
So, \[{V_1} = \pi {r^2}h = \pi {r^3}\] (because h = r)
As we know that if h is the height and r is the radius of cone then its volume is calculated as \[\dfrac{1}{3}\pi {r^2}h\]
Let the volume of the cone is \[{V_2}\].
So, \[{V_2} = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {r^3}\] (because h = r)
As we know that if r is the radius of hemisphere then its volume is calculated as \[\dfrac{2}{3}\pi {r^3}\]
Let the volume of the hemisphere is \[{V_3}\].
So, \[{V_3} = \dfrac{2}{3}\pi {r^3}h\]
Now the ratio of the volumes of cylinder, cone and hemisphere is the ratio of \[{V_1}\], \[{V_2}\] and \[{V_3}\].
So, \[{V_1}:{V_2}:{V_3} = \pi {r^3}:\dfrac{1}{3}\pi {r^3}:\dfrac{2}{3}\pi {r^3} = 1:\dfrac{1}{3}:\dfrac{2}{3}\]
On multiplying ratio be 3. We get,
\[{V_1}:{V_2}:{V_3} = 3:1:2\]
Hence, the volume of the cylinder cone and hemisphere are in ratio 3 : 1 : 2.
Note:- Whenever we come up with this type of problem the first, we had to write the formula of all the given shapes using same parameters and the we check whether any parameter is missing in any formula like here in the formula of volume of hemisphere, height is not present but we know that the height of the hemisphere is same as its radius. So, we had to replace height with radius in the formula of volume of all given shapes because they all had the same height and radius. And after that we can easily divide their volume to get the required ratio of their volumes.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
What did the military generals do How did their attitude class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
For Frost what do fire and ice stand for Here are some class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What did Valli find about the bus journey How did she class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)