Answer
Verified
441k+ views
Hint: Dip circles are used to measure the angle between earth’s magnetic field and the horizon. In a plane which is perpendicular to the magnetic meridian, the earth’s horizontal component of the magnetic field will be zero. Use this to tell the direction in which the needle will stay.
Complete step by step answer:Dip circle consists of a magnetic needle pivoted at the centre of the vertical circular scale that can rotate in the plane of the scale about the horizon.
When the dip circle is placed with the plane of the circle in the magnetic meridian of the earth, the needle points in the direction of the earth’s magnetic field.
Here the dip circle is taken to a geomagnetic equator. At the geomagnetic equator, the needle tries to suspend in the horizontal direction.
But here the needle is allowed to move in a vertical plane which is perpendicular to the magnetic meridian.
Therefore, the earth’s horizontal component of the magnetic field will be zero. So it only experiences the earth’s vertical component of the magnetic field and the needle will be aligned with the vertical component.
Therefore, the needle stays in the direction it is released.
Hence, the correct option is Option D, the needle will stay in any direction it is released.
Note:Do not confuse the Geomagnetic equator with the geographic equator. Geomagnetic equator is defined as the line around earth where the magnetic field is horizontal or parallel to the earth’s surface. It does not round up the earth like the geographic equator but instead it connects geomagnetic (north and south) poles.
Complete step by step answer:Dip circle consists of a magnetic needle pivoted at the centre of the vertical circular scale that can rotate in the plane of the scale about the horizon.
When the dip circle is placed with the plane of the circle in the magnetic meridian of the earth, the needle points in the direction of the earth’s magnetic field.
Here the dip circle is taken to a geomagnetic equator. At the geomagnetic equator, the needle tries to suspend in the horizontal direction.
But here the needle is allowed to move in a vertical plane which is perpendicular to the magnetic meridian.
Therefore, the earth’s horizontal component of the magnetic field will be zero. So it only experiences the earth’s vertical component of the magnetic field and the needle will be aligned with the vertical component.
Therefore, the needle stays in the direction it is released.
Hence, the correct option is Option D, the needle will stay in any direction it is released.
Note:Do not confuse the Geomagnetic equator with the geographic equator. Geomagnetic equator is defined as the line around earth where the magnetic field is horizontal or parallel to the earth’s surface. It does not round up the earth like the geographic equator but instead it connects geomagnetic (north and south) poles.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Draw a labelled sketch of the human eye class 12 physics CBSE