Answer
Verified
394.6k+ views
Hint: In this question, we need to determine the angular position and the angular acceleration of the rotating disc at 4 seconds. For this, we will follow the relation between the angular position, angular velocity, and the angular acceleration of the rotating body by differentiation and integration process.
Complete step by step answer:
The angular velocity of the disc rotating about the fixed axis has been given as $\omega = at + b$ where, $\omega $ is the angular velocity, ‘t’ is the time and ‘a’ and ‘b’ are the constants.
According to the question, at t=0, the angular velocity of the rotating disc is 1 radian per second. So, substitute \[t = 0{\text{ and }}\omega = 1{\text{ rad/sec}}\] in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 1 = a(0) + b \\
\therefore b = 1 - - - - (i) \\
$
Again, at t=2 seconds, the angular velocity of the rotating disc is 1 radian per second. So, substitute $t = 2{\text{ sec and }}\omega = 5{\text{ rad/sec}}$ in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 5 = a(2) + 1 \\
\Rightarrow 2a = 5 - 1 \\
\Rightarrow a = \dfrac{4}{2} \\
\therefore a = 2 - - - - (ii) \\
$
Substitute the values for the equations (i) and (ii) in the equation $\omega = at + b$ we get
$
\Rightarrow\omega = at + b \\
\Rightarrow\omega = 2t + 1 - - - - (iii) \\
$
The rate of change in the angular velocity of the rotating body results in the angular acceleration of the rotating body, Mathematically, $\dfrac{{d\omega }}{{dt}} = \alpha $ where, $\omega $ is the angular velocity and $\alpha $ is the angular acceleration.
So, differentiate the equation $\omega = 2t + 1$ with respect to time to determine the angular acceleration of the rotating disc.
$
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\dfrac{{d\omega }}{{dt}} = \dfrac{d}{{dt}}\left( {2t + 1} \right) \\
\Rightarrow\alpha = 2{\text{ rad/se}}{{\text{c}}^2} \\
$
Also, the integration of the angular velocity of the rotating disc results in the angular position of the rotating disc. Mathematically, $\int\limits_{{\theta _0}}^\theta {\omega dt} = \theta $.
So, integrate the equation $\omega = 2t + 1$ to determine the expression for the angular position of the rotating disc.
\[
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\int\limits_{{\theta _0}}^\theta {\omega dt} = \int\limits_0^t {\left( {2t + 1} \right)} dt \\
\Rightarrow \left[ \theta \right]_{{\theta _0}}^\theta = \left[ {{t^2} + t} \right]_0^t \\
\Rightarrow\theta - {\theta _0} = {t^2} + t - - - - (iv) \\
\]
It is given in the question that the initial angular position of the rotating disc is 2 radians, and we need to determine the angular position at t= 4 seconds. So, substitute \[{\theta _0} = 2{\text{ rad and }}t = 4{\text{ sec}}\] in the equation (iv), we get
\[
\Rightarrow\theta - {\theta _0} = {t^2} + t \\
\Rightarrow\theta - 2 = {(4)^2} + 4 \\
\Rightarrow\theta = 16 + 4 + 2 \\
\Rightarrow\theta= 22{\text{ rad}} \\
\]
Hence, the angular position and the angular acceleration of the rotating disc at 4 seconds are 22 radians and 2 radians per square seconds, respectively.
Note:It is interesting to note here that, the angular acceleration of the rotating disc is independent of the variable ‘t’, and so, we can say that the disc is rotating with the constant angular acceleration and is not changing with respect to time.
Complete step by step answer:
The angular velocity of the disc rotating about the fixed axis has been given as $\omega = at + b$ where, $\omega $ is the angular velocity, ‘t’ is the time and ‘a’ and ‘b’ are the constants.
According to the question, at t=0, the angular velocity of the rotating disc is 1 radian per second. So, substitute \[t = 0{\text{ and }}\omega = 1{\text{ rad/sec}}\] in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 1 = a(0) + b \\
\therefore b = 1 - - - - (i) \\
$
Again, at t=2 seconds, the angular velocity of the rotating disc is 1 radian per second. So, substitute $t = 2{\text{ sec and }}\omega = 5{\text{ rad/sec}}$ in the equation $\omega = at + b$ to establish a relation between the constants ‘a’ and ‘b’.
$
\Rightarrow \omega = at + b \\
\Rightarrow 5 = a(2) + 1 \\
\Rightarrow 2a = 5 - 1 \\
\Rightarrow a = \dfrac{4}{2} \\
\therefore a = 2 - - - - (ii) \\
$
Substitute the values for the equations (i) and (ii) in the equation $\omega = at + b$ we get
$
\Rightarrow\omega = at + b \\
\Rightarrow\omega = 2t + 1 - - - - (iii) \\
$
The rate of change in the angular velocity of the rotating body results in the angular acceleration of the rotating body, Mathematically, $\dfrac{{d\omega }}{{dt}} = \alpha $ where, $\omega $ is the angular velocity and $\alpha $ is the angular acceleration.
So, differentiate the equation $\omega = 2t + 1$ with respect to time to determine the angular acceleration of the rotating disc.
$
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\dfrac{{d\omega }}{{dt}} = \dfrac{d}{{dt}}\left( {2t + 1} \right) \\
\Rightarrow\alpha = 2{\text{ rad/se}}{{\text{c}}^2} \\
$
Also, the integration of the angular velocity of the rotating disc results in the angular position of the rotating disc. Mathematically, $\int\limits_{{\theta _0}}^\theta {\omega dt} = \theta $.
So, integrate the equation $\omega = 2t + 1$ to determine the expression for the angular position of the rotating disc.
\[
\Rightarrow\omega = 2t + 1 \\
\Rightarrow\int\limits_{{\theta _0}}^\theta {\omega dt} = \int\limits_0^t {\left( {2t + 1} \right)} dt \\
\Rightarrow \left[ \theta \right]_{{\theta _0}}^\theta = \left[ {{t^2} + t} \right]_0^t \\
\Rightarrow\theta - {\theta _0} = {t^2} + t - - - - (iv) \\
\]
It is given in the question that the initial angular position of the rotating disc is 2 radians, and we need to determine the angular position at t= 4 seconds. So, substitute \[{\theta _0} = 2{\text{ rad and }}t = 4{\text{ sec}}\] in the equation (iv), we get
\[
\Rightarrow\theta - {\theta _0} = {t^2} + t \\
\Rightarrow\theta - 2 = {(4)^2} + 4 \\
\Rightarrow\theta = 16 + 4 + 2 \\
\Rightarrow\theta= 22{\text{ rad}} \\
\]
Hence, the angular position and the angular acceleration of the rotating disc at 4 seconds are 22 radians and 2 radians per square seconds, respectively.
Note:It is interesting to note here that, the angular acceleration of the rotating disc is independent of the variable ‘t’, and so, we can say that the disc is rotating with the constant angular acceleration and is not changing with respect to time.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE