
A double convex lens (\[\mu = 1.5\]) in air has its focal length equal to 20 cm. When immersed in water (\[\mu = 4/3\]) its focal length would be
A. 20 cm
B. 80/9 cm
C. 360/9 cm
D. 80 cm
Answer
580.5k+ views
Hint: Use the lens maker’s formula to express the focal length of the lens for both water medium and air medium. Take the ratio of the focal lengths keeping the radii of curvature the same for both the cases as it is a constant quantity.
Formula used:
\[\dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\]
Here, f is the focal length of the lens, \[{\mu _2}\] is the refractive index of the lens, \[{\mu _1}\] is the refractive index of the medium, \[{R_1}\] and \[{R_2}\] is the radius of curvatures of both surfaces of the lens.
Complete step by step answer:We know the lens maker’s formula for thin lens is,
\[\dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\]
Here, f is the focal length of the lens, \[{\mu _2}\] is the refractive index of the lens, \[{\mu _1}\] is the refractive index of the medium, \[{R_1}\] and \[{R_2}\] is the radius of curvatures of both surfaces of the lens.
We can express the focal length of the lens in air and water as follows,
\[\dfrac{1}{{{f_{air}}}} = \left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\] ……. (1)
\[\dfrac{1}{{{f_{water}}}} = \left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\] ….… (2)
Divide equation (1) by equation (2).
\[\dfrac{{\dfrac{1}{{{f_{air}}}}}}{{\dfrac{1}{{{f_{water}}}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)}}{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)}}\]
\[ \Rightarrow \dfrac{{{f_{water}}}}{{{f_{air}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)}}{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{{f_{water}}}}{{{f_{air}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}} - {\mu _{air}}}}{{{\mu _{air}}}}} \right)}}{{\left( {\dfrac{{{\mu _{lens}} - {\mu _{water}}}}{{{\mu _{water}}}}} \right)}}\]
\[ \Rightarrow {f_{water}} = \left( {\dfrac{{{\mu _{lens}} - {\mu _{air}}}}{{{\mu _{lens}} - {\mu _{water}}}}} \right)\left( {\dfrac{{{\mu _{water}}}}{{{\mu _{air}}}}} \right){f_{air}}\]
Substitute 1 for \[{\mu _{air}}\], 1.5 for \[{\mu _{lens}}\], 4/3 for \[{\mu _{water}}\] and 20 cm for \[{f_{air}}\] in the above equation.
\[{f_{water}} = \left( {\dfrac{{1.5 - 1}}{{1.5 - \dfrac{4}{3}}}} \right)\left( {\dfrac{{\dfrac{4}{3}}}{1}} \right)\left( {20\,cm} \right)\]
\[ \Rightarrow {f_{water}} = \left( 4 \right)\left( {20\,cm} \right)\]
\[ \Rightarrow {f_{water}} = 80\,cm\]
So, the correct answer is option (D).
Note:Lens maker’s formula is used to construct the lens of desired focal length. We have got the positive focal length of the lens, which means the lens still acts as a convex lens. When the refractive index of the medium is greater than that of the lens, the focal length becomes negative. The focal length is negative for a concave lens. Therefore, when we place the convex lens in a medium of refractive index greater than the refractive index of the lens, the convex lens behaves as a concave lens.
Formula used:
\[\dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\]
Here, f is the focal length of the lens, \[{\mu _2}\] is the refractive index of the lens, \[{\mu _1}\] is the refractive index of the medium, \[{R_1}\] and \[{R_2}\] is the radius of curvatures of both surfaces of the lens.
Complete step by step answer:We know the lens maker’s formula for thin lens is,
\[\dfrac{1}{f} = \left( {\dfrac{{{\mu _2}}}{{{\mu _1}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\]
Here, f is the focal length of the lens, \[{\mu _2}\] is the refractive index of the lens, \[{\mu _1}\] is the refractive index of the medium, \[{R_1}\] and \[{R_2}\] is the radius of curvatures of both surfaces of the lens.
We can express the focal length of the lens in air and water as follows,
\[\dfrac{1}{{{f_{air}}}} = \left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\] ……. (1)
\[\dfrac{1}{{{f_{water}}}} = \left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)\] ….… (2)
Divide equation (1) by equation (2).
\[\dfrac{{\dfrac{1}{{{f_{air}}}}}}{{\dfrac{1}{{{f_{water}}}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)}}{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)}}\]
\[ \Rightarrow \dfrac{{{f_{water}}}}{{{f_{air}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{air}}}} - 1} \right)}}{{\left( {\dfrac{{{\mu _{lens}}}}{{{\mu _{water}}}} - 1} \right)}}\]
\[ \Rightarrow \dfrac{{{f_{water}}}}{{{f_{air}}}} = \dfrac{{\left( {\dfrac{{{\mu _{lens}} - {\mu _{air}}}}{{{\mu _{air}}}}} \right)}}{{\left( {\dfrac{{{\mu _{lens}} - {\mu _{water}}}}{{{\mu _{water}}}}} \right)}}\]
\[ \Rightarrow {f_{water}} = \left( {\dfrac{{{\mu _{lens}} - {\mu _{air}}}}{{{\mu _{lens}} - {\mu _{water}}}}} \right)\left( {\dfrac{{{\mu _{water}}}}{{{\mu _{air}}}}} \right){f_{air}}\]
Substitute 1 for \[{\mu _{air}}\], 1.5 for \[{\mu _{lens}}\], 4/3 for \[{\mu _{water}}\] and 20 cm for \[{f_{air}}\] in the above equation.
\[{f_{water}} = \left( {\dfrac{{1.5 - 1}}{{1.5 - \dfrac{4}{3}}}} \right)\left( {\dfrac{{\dfrac{4}{3}}}{1}} \right)\left( {20\,cm} \right)\]
\[ \Rightarrow {f_{water}} = \left( 4 \right)\left( {20\,cm} \right)\]
\[ \Rightarrow {f_{water}} = 80\,cm\]
So, the correct answer is option (D).
Note:Lens maker’s formula is used to construct the lens of desired focal length. We have got the positive focal length of the lens, which means the lens still acts as a convex lens. When the refractive index of the medium is greater than that of the lens, the focal length becomes negative. The focal length is negative for a concave lens. Therefore, when we place the convex lens in a medium of refractive index greater than the refractive index of the lens, the convex lens behaves as a concave lens.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

