Answer
Verified
453k+ views
Hint: For an adiabatic process there is no heat exchange and to calculate heat from isobaric and isochoric(isovolumetric) process use molar heat capacity at constant pressure and molar heat capacity at constant volume and from the equation of adiabatic expansion you can find the ratio of molar heat capacity at constant pressure and molar heat capacity at constant volume.
Complete step by step answer:
Let look at the adiabatic equation, we have ${P^3}{V^5} = {\rm{constant}}$ which can be also written as $P{V^{\dfrac{5}{3}}} = {\rm{constant}}$ therefore, $\gamma = \dfrac{5}{3}$ from the value of $\gamma$ we can find molar heat capacity at constant pressure and molar heat capacity at constant volume i.e; ${C_p} \& {C_V}$.
So, $\gamma = \dfrac{{{C_P}}}{{{C_V}}} = \dfrac{5}{3}$
$ \Rightarrow {C_P} = \dfrac{5}{2}R \& {C_V} = \dfrac{3}{2}R$
Now will find heat supplied in both cases
For case(i) isobaric process
Heat supplied ${H_1} = n{C_P}\Delta T$
$ \Rightarrow {H_1} = n\dfrac{5}{2}R({T_f} - {T_i})\\
\Rightarrow {H_1} = \dfrac{5}{2}(nR{T_f} - nR{T_i})\\
\Rightarrow {H_1} = \dfrac{5}{2}({P_i}{V_f} - {P_i}{V_i})$
Putting value of pressure and volume we have value of heat supplied as
${H_1} = \dfrac{5}{2} \times {10^5}(8 - 1){10^{ - 3}}\\
\Rightarrow{H_1}= 1750\,joule$
For case(ii) isochoric(isovolumetric)
Heat supplied ${H_2} = n{C_V}\Delta T$
$ \Rightarrow {H_2} = n\dfrac{3}{2}R({T_f} - {T_i})\\
\Rightarrow {H_2} = \dfrac{5}{2}(nR{T_f} - nR{T_i})\\
\Rightarrow {H_2} = \dfrac{5}{2}({P_f}{V_f} - {P_i}{V_f})$
Putting values of pressure and temperature we have,
${H_2} = \dfrac{3}{2} \times 8 \times {10^{ - 3}} \times (\dfrac{1}{{32}} - 1){10^5}\\
\Rightarrow{H_2}= - 1162 joule$
Total heat supplied will be sum of these two hearts
$H = {H_1} + {H_2} \\
\Rightarrow H= 1750 + ( - 1162) \\
\therefore H= 588\,joule$
Hence, the correct answer is Option C.
Note: Here expression of adiabatic expansion is given to help you find molar heat capacity at constant pressure and molar heat capacity at constant volume because you don’t know the which type of gas is it although you know it once you found the molar heat capacity at constant pressure and molar heat capacity at constant volume. Once you know these two heat capacities simply put the formula to get the final answer.
Complete step by step answer:
Let look at the adiabatic equation, we have ${P^3}{V^5} = {\rm{constant}}$ which can be also written as $P{V^{\dfrac{5}{3}}} = {\rm{constant}}$ therefore, $\gamma = \dfrac{5}{3}$ from the value of $\gamma$ we can find molar heat capacity at constant pressure and molar heat capacity at constant volume i.e; ${C_p} \& {C_V}$.
So, $\gamma = \dfrac{{{C_P}}}{{{C_V}}} = \dfrac{5}{3}$
$ \Rightarrow {C_P} = \dfrac{5}{2}R \& {C_V} = \dfrac{3}{2}R$
Now will find heat supplied in both cases
For case(i) isobaric process
Heat supplied ${H_1} = n{C_P}\Delta T$
$ \Rightarrow {H_1} = n\dfrac{5}{2}R({T_f} - {T_i})\\
\Rightarrow {H_1} = \dfrac{5}{2}(nR{T_f} - nR{T_i})\\
\Rightarrow {H_1} = \dfrac{5}{2}({P_i}{V_f} - {P_i}{V_i})$
Putting value of pressure and volume we have value of heat supplied as
${H_1} = \dfrac{5}{2} \times {10^5}(8 - 1){10^{ - 3}}\\
\Rightarrow{H_1}= 1750\,joule$
For case(ii) isochoric(isovolumetric)
Heat supplied ${H_2} = n{C_V}\Delta T$
$ \Rightarrow {H_2} = n\dfrac{3}{2}R({T_f} - {T_i})\\
\Rightarrow {H_2} = \dfrac{5}{2}(nR{T_f} - nR{T_i})\\
\Rightarrow {H_2} = \dfrac{5}{2}({P_f}{V_f} - {P_i}{V_f})$
Putting values of pressure and temperature we have,
${H_2} = \dfrac{3}{2} \times 8 \times {10^{ - 3}} \times (\dfrac{1}{{32}} - 1){10^5}\\
\Rightarrow{H_2}= - 1162 joule$
Total heat supplied will be sum of these two hearts
$H = {H_1} + {H_2} \\
\Rightarrow H= 1750 + ( - 1162) \\
\therefore H= 588\,joule$
Hence, the correct answer is Option C.
Note: Here expression of adiabatic expansion is given to help you find molar heat capacity at constant pressure and molar heat capacity at constant volume because you don’t know the which type of gas is it although you know it once you found the molar heat capacity at constant pressure and molar heat capacity at constant volume. Once you know these two heat capacities simply put the formula to get the final answer.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE