Answer
Verified
469.8k+ views
Hint: In the above figure the charge +q is at a sufficient distance to have its influence on the sphere. Let us say the charge +Q is uniformly distributed on the sphere. When the charge +q is actually present at its position it will move the charges on the charges on the sphere away from it as the charges are similar in nature i.e. repel. From this information we will arrive at a conclusion that what will happen to the net charge density of the sphere and using Gauss law we will see that the charge +q affect the electric field at point T.
Complete step-by-step answer:
In the figure 1 above a shell comprises a uniform positive charge on its surface. When a positively charged rod is brought close to it, the charge density moves on the other side due to electrostatic repulsion. This above process is called electrostatic induction.
A similar thing will take place when positive charge is kept at a distance r from the left side of the sphere. The charge density will shift towards the right of the sphere. Hence we can conclude that the charge density at point P will increase.
Now let us analyze the electric field at point T. For that let us say we enclose a Gaussian surface enclosing the inside the sphere such that the point T passes through the Gaussian surface. Hence by gauss law i.e. $\text{E}\text{. }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{{{\in }_{\circ }}}$ where E is the electric field on the Gaussian surface, $\Delta S$ is the surface area of the Gaussian surface, q is the charge enclosed within the surface and ${{\in }_{\circ }}$is the permittivity of free space. There is no charge present within the sphere. Hence q enclosed is zero which implies the electric field on the Gaussian surface is zero. This implies that the electric field at point P is also zero since point P lies on the Gaussian surface.
Hence we can conclude that the surface charge density at point P increases and the electric field at point T will remain zero. Hence the correct answer is option d.
Note: It is to be noted that the change in charge density does not affect the electric field inside. If the distance r was very huge then there would not be any induction and the surface density at point P would have remained the same. If the charge +q is replaced by-q then the charge density would have shifted towards the left of the sphere and hence the charge density at point P would have decreased.
Complete step-by-step answer:
In the figure 1 above a shell comprises a uniform positive charge on its surface. When a positively charged rod is brought close to it, the charge density moves on the other side due to electrostatic repulsion. This above process is called electrostatic induction.
A similar thing will take place when positive charge is kept at a distance r from the left side of the sphere. The charge density will shift towards the right of the sphere. Hence we can conclude that the charge density at point P will increase.
Now let us analyze the electric field at point T. For that let us say we enclose a Gaussian surface enclosing the inside the sphere such that the point T passes through the Gaussian surface. Hence by gauss law i.e. $\text{E}\text{. }\!\!\Delta\!\!\text{ S=}\dfrac{\text{q}}{{{\in }_{\circ }}}$ where E is the electric field on the Gaussian surface, $\Delta S$ is the surface area of the Gaussian surface, q is the charge enclosed within the surface and ${{\in }_{\circ }}$is the permittivity of free space. There is no charge present within the sphere. Hence q enclosed is zero which implies the electric field on the Gaussian surface is zero. This implies that the electric field at point P is also zero since point P lies on the Gaussian surface.
Hence we can conclude that the surface charge density at point P increases and the electric field at point T will remain zero. Hence the correct answer is option d.
Note: It is to be noted that the change in charge density does not affect the electric field inside. If the distance r was very huge then there would not be any induction and the surface density at point P would have remained the same. If the charge +q is replaced by-q then the charge density would have shifted towards the left of the sphere and hence the charge density at point P would have decreased.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE