Answer
Verified
433.8k+ views
Hint From the given value of the speed of the centre of mass, we can calculate the translational kinetic energy if the hoop by using its formula. Then, using the relation between the angular and the translational velocity, we can determine the angular velocity. Also, since the hoop is circular in shape, we can use the formula for the moment of inertia of the circle to get the MI of the hoop. Then using the formula for the rotational kinetic energy we can determine its value for the hoop. Finally, using the work-energy theorem, we can calculate the required work done.
Formula used: The formulae used for solving this question are
${K_T} = \dfrac{1}{2}m{v^2}$
${K_R} = \dfrac{1}{2}I{\omega ^2}$
\[\omega = \dfrac{v}{R}\]
Complete step-by-step solution:
We know that the translational kinetic of a moving body is given by
${K_T} = \dfrac{1}{2}m{v^2}$
The mass of the hoop is $m = 100kg$ and the velocity of the centre of mass is $v = 20cm/s = 0.2m/s$. Substituting these above, we get
${K_T} = \dfrac{1}{2}\left( {100} \right){\left( {0.2} \right)^2}$
$ \Rightarrow {K_T} = \dfrac{1}{2}\left( {100} \right){\left( {0.2} \right)^2}$
On solving, we get
${K_T} = 2J$.................(1)
Now, we know that the rotational kinetic energy is given by
${K_R} = \dfrac{1}{2}I{\omega ^2}$ ……….(2)
Since the hoop is circular in shape, so its moment of inertia is given by
$I = m{r^2}$
Substituting $m = 100kg$ and $r = 2m$ we get
$I = 100 \times {2^2}$
$ \Rightarrow I = 400kg{m^2}$ …….(3)
Also, the angular velocity is given by
$\omega = \dfrac{v}{r}$
Substituting $v = 0.2m/s$ and $r = 2m$ we get
$\omega = \dfrac{{0.2}}{2}$
$ \Rightarrow \omega = 0.1m/s$ ………………...(4)
Substituting (3) and (4) in (1) we get
${K_R} = \dfrac{1}{2}\left( {400} \right){\left( {0.1} \right)^2}$
$ \Rightarrow {K_R} = 2J$
So the total kinetic energy of the hoop is given by
$K = {K_R} + {K_T}$
Substituting ${K_T} = 2J$ and ${K_R} = 2J$ we get
$K = 2 + 2$
$ \Rightarrow K = 4J$
This is the initial kinetic energy of the hoop. When the hoop stops, its final kinetic energy becomes zero, that is,
$K' = 0$
Now, we know by the work energy theorem that the work done is equal to the change in kinetic energy, that is,
$W = \Delta K$
$ \Rightarrow W = K' - K$
Substituting $K' = 0$ and $K = 4J$ we get
$W = 0 - 4$
$ \Rightarrow W = - 4J$
Hence, the magnitude of the required work done is equal to $4J$.
Note: The negative sign of the work done is because the stopping force is opposite to the motion of the hoop. Do not forget to include the calculation for the rotational kinetic energy, along with translational kinetic energy of the hoop. Also, do not forget to write the velocity in the SI unit of meters per second, which is given in the CGS unit of centimeters per second.
Formula used: The formulae used for solving this question are
${K_T} = \dfrac{1}{2}m{v^2}$
${K_R} = \dfrac{1}{2}I{\omega ^2}$
\[\omega = \dfrac{v}{R}\]
Complete step-by-step solution:
We know that the translational kinetic of a moving body is given by
${K_T} = \dfrac{1}{2}m{v^2}$
The mass of the hoop is $m = 100kg$ and the velocity of the centre of mass is $v = 20cm/s = 0.2m/s$. Substituting these above, we get
${K_T} = \dfrac{1}{2}\left( {100} \right){\left( {0.2} \right)^2}$
$ \Rightarrow {K_T} = \dfrac{1}{2}\left( {100} \right){\left( {0.2} \right)^2}$
On solving, we get
${K_T} = 2J$.................(1)
Now, we know that the rotational kinetic energy is given by
${K_R} = \dfrac{1}{2}I{\omega ^2}$ ……….(2)
Since the hoop is circular in shape, so its moment of inertia is given by
$I = m{r^2}$
Substituting $m = 100kg$ and $r = 2m$ we get
$I = 100 \times {2^2}$
$ \Rightarrow I = 400kg{m^2}$ …….(3)
Also, the angular velocity is given by
$\omega = \dfrac{v}{r}$
Substituting $v = 0.2m/s$ and $r = 2m$ we get
$\omega = \dfrac{{0.2}}{2}$
$ \Rightarrow \omega = 0.1m/s$ ………………...(4)
Substituting (3) and (4) in (1) we get
${K_R} = \dfrac{1}{2}\left( {400} \right){\left( {0.1} \right)^2}$
$ \Rightarrow {K_R} = 2J$
So the total kinetic energy of the hoop is given by
$K = {K_R} + {K_T}$
Substituting ${K_T} = 2J$ and ${K_R} = 2J$ we get
$K = 2 + 2$
$ \Rightarrow K = 4J$
This is the initial kinetic energy of the hoop. When the hoop stops, its final kinetic energy becomes zero, that is,
$K' = 0$
Now, we know by the work energy theorem that the work done is equal to the change in kinetic energy, that is,
$W = \Delta K$
$ \Rightarrow W = K' - K$
Substituting $K' = 0$ and $K = 4J$ we get
$W = 0 - 4$
$ \Rightarrow W = - 4J$
Hence, the magnitude of the required work done is equal to $4J$.
Note: The negative sign of the work done is because the stopping force is opposite to the motion of the hoop. Do not forget to include the calculation for the rotational kinetic energy, along with translational kinetic energy of the hoop. Also, do not forget to write the velocity in the SI unit of meters per second, which is given in the CGS unit of centimeters per second.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE