![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A horse is tied to a peg at one corner of a square shaped grass field of side \[15m\] by means of a \[5m\] long rope. Find
(i)the area of that part of that part of the field in which the horse can graze
(ii)The increase in the grazing area if the rope were 10 m long instead of 5m (Use =3.14)
Answer
483.3k+ views
Hint: Let ABCD be square filed and the length the of rope \[ = 5m(r)\] we need to find Area of the field which horse can graze i.e. Area of sector QBP.
In square all angles are \[90\] Hence\[\angle QBP = 90\]
In II nd part length of rope is increased to \[10m\]
Area gazed by horse now \[ = \] Area of sector HBG
And increasing in grazing Area\[ = \]Area grazed by horse Now-Area grazed previously
Complete step-by- step solution:
Let ABCD be square filed and the length of rope \[ = 5m(r)\] here the area of the field which a horse can graze is nothing but the Area of sector QBP.
(i)Here we have to find the part of that part of the field in which the horse can graze
Area of sector \[ = \dfrac{\theta }{{360}} \times \pi {r^2}\]
We can call it sector in which horse graze the area
Where r=length of rope
\[\theta = {90^0},\pi = \dfrac{{22}}{7}\]
On substituting the value in \[eq(i)\] we get
Area of sector \[ = \dfrac{{90}}{{360}} \times \dfrac{{22}}{7} \times {5^2}\]
\[ = 19.625{m^2}\]
(ii)If the rope is increased by the \[10m\] long the the area of the area gazed by horse now \[ = \] Area of sector HBG
So, new area \[ = \dfrac{{90}}{{360}} \times \dfrac{{22}}{7} \times {(10)^2}\]
\[ = 78.5{m^2}\]
We have to find increased in area which is nothing but subtracting the old area from new area
Increased area \[ = \]New area-old area
Increased area\[ = 78.5 - 19.625\]
Increased area\[ = 58.875{m^2}\]
Note: The area available for here to graze us nothing but “area of quadrant of a circle”
The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by the two half-axes. Quadrant consists of four coordinates.
Area of the Quadrant:
\[ = \dfrac{{\pi \times {r^2}}}{4}\]
\[ = \dfrac{{3.14 \times 5 \times 5}}{4}\]
\[ = 19.625{m^2}\]------->(old area)
If length of the rope is increased
Area\[ = 78.5{m^2}\]------>(new area)
Therefore to get increased area we will subtract old area from new area i.e
Increased area \[ = \]New area-old area
Increased area\[ = 78.5 - 19.625\]
Increased area\[ = 58.875{m^2}\]
In square all angles are \[90\] Hence\[\angle QBP = 90\]
In II nd part length of rope is increased to \[10m\]
Area gazed by horse now \[ = \] Area of sector HBG
And increasing in grazing Area\[ = \]Area grazed by horse Now-Area grazed previously
Complete step-by- step solution:
![seo images](https://www.vedantu.com/question-sets/723057f4-cce4-4484-80e7-205277b854135294105013958577241.png)
Let ABCD be square filed and the length of rope \[ = 5m(r)\] here the area of the field which a horse can graze is nothing but the Area of sector QBP.
(i)Here we have to find the part of that part of the field in which the horse can graze
Area of sector \[ = \dfrac{\theta }{{360}} \times \pi {r^2}\]
We can call it sector in which horse graze the area
Where r=length of rope
\[\theta = {90^0},\pi = \dfrac{{22}}{7}\]
On substituting the value in \[eq(i)\] we get
Area of sector \[ = \dfrac{{90}}{{360}} \times \dfrac{{22}}{7} \times {5^2}\]
\[ = 19.625{m^2}\]
(ii)If the rope is increased by the \[10m\] long the the area of the area gazed by horse now \[ = \] Area of sector HBG
So, new area \[ = \dfrac{{90}}{{360}} \times \dfrac{{22}}{7} \times {(10)^2}\]
\[ = 78.5{m^2}\]
We have to find increased in area which is nothing but subtracting the old area from new area
Increased area \[ = \]New area-old area
Increased area\[ = 78.5 - 19.625\]
Increased area\[ = 58.875{m^2}\]
Note: The area available for here to graze us nothing but “area of quadrant of a circle”
The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by the two half-axes. Quadrant consists of four coordinates.
Area of the Quadrant:
\[ = \dfrac{{\pi \times {r^2}}}{4}\]
\[ = \dfrac{{3.14 \times 5 \times 5}}{4}\]
\[ = 19.625{m^2}\]------->(old area)
If length of the rope is increased
Area\[ = 78.5{m^2}\]------>(new area)
Therefore to get increased area we will subtract old area from new area i.e
Increased area \[ = \]New area-old area
Increased area\[ = 78.5 - 19.625\]
Increased area\[ = 58.875{m^2}\]
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write an application to the principal requesting five class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)