Answer
Verified
444.6k+ views
Hint: Take the coordinate of focal chord A and B as $\left( a{{t}^{2}},2at \right)$ parametric form. Find the length of focal chord AB. Take slope as equal to t and thus substitute and prove $4a{{\cos }^{2}}\alpha $. Put $\alpha ={{60}^{\circ }}$ and get the value of a, to get the value of $\dfrac{32}{3}$.
Complete step by step answer:
We have been given the equation of parabola as \[{{y}^{2}}=8x\] .
The length of the focal chord, ${{t}_{1}}{{t}_{2}}=-1$ i.e. ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ ,
Hence, if A and B are the coordinate of the point on the parabola then. We can take their coordinate as,
$A\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $B\left( at_{2}^{2},2a{{t}_{2}} \right)$ .
But we found out that ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ .
$\therefore $ coordinate of B changes to, \[B\equiv \left( a{{\left( \dfrac{-1}{{{t}_{1}}} \right)}^{2}},2a\left( \dfrac{-1}{{{t}_{1}}} \right) \right)\equiv \left( \dfrac{a}{t_{1}^{2}},\dfrac{-2a}{{{t}_{1}}} \right)\].
Let’s assume ${{t}_{1}}=\dfrac{-1}{{{t}_{2}}}=t$.
Thus, we can write the coordinate as \[A\left( a{{t}^{2}},2at \right)\] and $B\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right)$ .
So, here $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right)$, $\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$.
The focus of the parabola is given as $\left( a.0 \right)$ .
Now, let us find the length of AB by using the distance formula,
i.e. distance $AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}=\sqrt{{{\left( a{{t}^{2}}-\dfrac{a}{{{t}^{2}}} \right)}^{2}}+{{\left( 2at+\dfrac{2a}{t} \right)}^{2}}}$
\[\begin{align}
& =\sqrt{{{a}^{2}}{{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}+{{\left( 2a \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}{{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}+4{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\
\end{align}\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Similarly, ${{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$
$\Rightarrow \left| \overline{AB} \right|=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left\{ {{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \right\}}$ [taking ${{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$common both the terms].
$=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2 \right)}=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{4}}}$ [we know ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$]
Hence it become, $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}$ ……………… (1)
Now, m = slope of line AB $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at+\dfrac{2a}{t}}{a{{t}^{2}}-\dfrac{a}{{{t}^{2}}}}=\dfrac{2a\left( t+\dfrac{1}{t} \right)}{a\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}=\dfrac{2\left( t+\dfrac{1}{t} \right)}{\left( t+\dfrac{1}{t} \right)\left( t-\dfrac{1}{t} \right)}=\dfrac{2}{t-\dfrac{1}{t}}$ .
So,
$\begin{align}
& m=\dfrac{2}{t-\dfrac{1}{t}} \\
& \Rightarrow \tan \alpha =m=\dfrac{2}{t-\dfrac{1}{t}} \\
& \Rightarrow t-\dfrac{1}{t}=\dfrac{2}{\tan \alpha }=2\cot \alpha \\
\end{align}$
We know that $\cot \theta =\dfrac{1}{\tan \theta }$ , by basic trigonometric identity.
Similarly
$\begin{align}
& {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \\
& \Rightarrow {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( 2\cot \alpha \right)}^{2}}+4=4{{\cot }^{2}}\alpha +4=4\left( {{\cot }^{2}}\alpha -1 \right) \\
\end{align}$
We know that ${{\cot }^{2}}\alpha -1=\cos e{{c}^{2}}\alpha $ .
$\therefore {{\left( t+\dfrac{1}{t} \right)}^{2}}=4\left[ {{\cot }^{2}}\alpha -1 \right]=4\cos e{{c}^{2}}\alpha $
We got the length of focal chord $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}=4a\cos e{{c}^{2}}\alpha $
The equation of parabola given is \[{{y}^{2}}=8x\]. Now let us compare it with the general equation of the parabola is ${{y}^{2}}=4ax$ .
Hence, we get latus rectum $4a=8\Rightarrow a=2$ and $\alpha ={{60}^{\circ }}$
Thus, length focal chord $=4a\cos e{{c}^{2}}\alpha =4\times 2\cos e{{c}^{2}}{{60}^{\circ }}=8\cos e{{c}^{2}}{{60}^{\circ }}$
From trigonometric table we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$
$\therefore \cos ec{{60}^{\circ }}=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{2}{\sqrt{3}}$
$\therefore $ Length of focal chord $8\cos e{{c}^{2}}{{60}^{\circ }}=8\times {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}=\dfrac{8\times 4}{3}=\dfrac{32}{3}$ .
Hence, it’s proved that both statement 1 and statement 2 are correct and R is the perfect reason for A.
Note: The angle inclination of a line is the angle formed by the intersection of the line and the x-axis, using a horizontal “run” of 1 and m for slope, The angle of inclination $\alpha ={{\tan }^{-1}}m$ or $m=\tan \alpha $. Thus, the reason why we took $\tan \alpha =slope$.
Complete step by step answer:
We have been given the equation of parabola as \[{{y}^{2}}=8x\] .
The length of the focal chord, ${{t}_{1}}{{t}_{2}}=-1$ i.e. ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ ,
Hence, if A and B are the coordinate of the point on the parabola then. We can take their coordinate as,
$A\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $B\left( at_{2}^{2},2a{{t}_{2}} \right)$ .
But we found out that ${{t}_{2}}=\dfrac{-1}{{{t}_{1}}}$ .
$\therefore $ coordinate of B changes to, \[B\equiv \left( a{{\left( \dfrac{-1}{{{t}_{1}}} \right)}^{2}},2a\left( \dfrac{-1}{{{t}_{1}}} \right) \right)\equiv \left( \dfrac{a}{t_{1}^{2}},\dfrac{-2a}{{{t}_{1}}} \right)\].
Let’s assume ${{t}_{1}}=\dfrac{-1}{{{t}_{2}}}=t$.
Thus, we can write the coordinate as \[A\left( a{{t}^{2}},2at \right)\] and $B\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right)$ .
So, here $\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{a}{{{t}^{2}}},\dfrac{-2a}{t} \right)$, $\left( {{x}_{2}},{{y}_{2}} \right)=\left( a{{t}^{2}},2at \right)$.
The focus of the parabola is given as $\left( a.0 \right)$ .
Now, let us find the length of AB by using the distance formula,
i.e. distance $AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}=\sqrt{{{\left( a{{t}^{2}}-\dfrac{a}{{{t}^{2}}} \right)}^{2}}+{{\left( 2at+\dfrac{2a}{t} \right)}^{2}}}$
\[\begin{align}
& =\sqrt{{{a}^{2}}{{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}+{{\left( 2a \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\
& \Rightarrow \sqrt{{{a}^{2}}{{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}+4{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}} \\
\end{align}\]
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Similarly, ${{\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$
$\Rightarrow \left| \overline{AB} \right|=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left\{ {{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \right\}}$ [taking ${{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}$common both the terms].
$=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{2}}\left( {{t}^{2}}+\dfrac{1}{{{t}^{2}}}+2 \right)}=\sqrt{{{a}^{2}}{{\left( t+\dfrac{1}{t} \right)}^{4}}}$ [we know ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$]
Hence it become, $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}$ ……………… (1)
Now, m = slope of line AB $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2at+\dfrac{2a}{t}}{a{{t}^{2}}-\dfrac{a}{{{t}^{2}}}}=\dfrac{2a\left( t+\dfrac{1}{t} \right)}{a\left( {{t}^{2}}-\dfrac{1}{{{t}^{2}}} \right)}=\dfrac{2\left( t+\dfrac{1}{t} \right)}{\left( t+\dfrac{1}{t} \right)\left( t-\dfrac{1}{t} \right)}=\dfrac{2}{t-\dfrac{1}{t}}$ .
So,
$\begin{align}
& m=\dfrac{2}{t-\dfrac{1}{t}} \\
& \Rightarrow \tan \alpha =m=\dfrac{2}{t-\dfrac{1}{t}} \\
& \Rightarrow t-\dfrac{1}{t}=\dfrac{2}{\tan \alpha }=2\cot \alpha \\
\end{align}$
We know that $\cot \theta =\dfrac{1}{\tan \theta }$ , by basic trigonometric identity.
Similarly
$\begin{align}
& {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( t-\dfrac{1}{t} \right)}^{2}}+4 \\
& \Rightarrow {{\left( t+\dfrac{1}{t} \right)}^{2}}={{\left( 2\cot \alpha \right)}^{2}}+4=4{{\cot }^{2}}\alpha +4=4\left( {{\cot }^{2}}\alpha -1 \right) \\
\end{align}$
We know that ${{\cot }^{2}}\alpha -1=\cos e{{c}^{2}}\alpha $ .
$\therefore {{\left( t+\dfrac{1}{t} \right)}^{2}}=4\left[ {{\cot }^{2}}\alpha -1 \right]=4\cos e{{c}^{2}}\alpha $
We got the length of focal chord $AB=a{{\left( t+\dfrac{1}{t} \right)}^{2}}=4a\cos e{{c}^{2}}\alpha $
The equation of parabola given is \[{{y}^{2}}=8x\]. Now let us compare it with the general equation of the parabola is ${{y}^{2}}=4ax$ .
Hence, we get latus rectum $4a=8\Rightarrow a=2$ and $\alpha ={{60}^{\circ }}$
Thus, length focal chord $=4a\cos e{{c}^{2}}\alpha =4\times 2\cos e{{c}^{2}}{{60}^{\circ }}=8\cos e{{c}^{2}}{{60}^{\circ }}$
From trigonometric table we know that $\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$
$\therefore \cos ec{{60}^{\circ }}=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{2}{\sqrt{3}}$
$\therefore $ Length of focal chord $8\cos e{{c}^{2}}{{60}^{\circ }}=8\times {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}=\dfrac{8\times 4}{3}=\dfrac{32}{3}$ .
Hence, it’s proved that both statement 1 and statement 2 are correct and R is the perfect reason for A.
Note: The angle inclination of a line is the angle formed by the intersection of the line and the x-axis, using a horizontal “run” of 1 and m for slope, The angle of inclination $\alpha ={{\tan }^{-1}}m$ or $m=\tan \alpha $. Thus, the reason why we took $\tan \alpha =slope$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE