Answer
Verified
415.5k+ views
Hint: The ratio of the inertial forces to the viscosity force that is subjected to the internal movement which is related to the different fluid velocities is known as the Reynolds number. It is a dimensionless number that is used to determine the types of flow patterns which are laminar or turbulent.
Formula used:
To find the Reynolds number,
${R_e} = \dfrac{{\rho vL}}{\mu }$
Where,
$\rho $ is the density,
$v$ is the speed of the flow,
$L$ is the linear dimension characteristic,
$\mu $is the dynamic viscosity
Complete step by step answer:
The values are given in the question. The liquid of coefficient of the viscosity $\eta = 1$ poise, pipe of the radius $3cm$, and the rate of volume flow are $1000l/\min $.
The rate of the flow is $1000l/\min $
The value of $\pi {r^2}$is $\dfrac{1}{{60}}{m^3}/s$
Substitute all the values in the Reynolds formula. We have,
${R_e} = \dfrac{{\rho vL}}{\mu }$
Where,
$\rho $ is the density,
$v$ is the speed of the flow,
$L$ is the linear dimension characteristic,
$\mu $ is the dynamic viscosity
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{1}{{60\pi {r^2}}} \times 2r$
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{{2r}}{{60\pi {r^2}}}$
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{2}{{60\pi r}}$
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\pi \times r}}$
The value of the radius is $3cm$ converting the centimeter into the meter we get,
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\pi \times 3 \times {{10}^{ - 2}}}}$
Substituting the value of $\pi$,
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\left( {3.16} \right) \times 3 \times {{10}^{ - 2}}}}$
\[ \Rightarrow {R_e} = \dfrac{{2000}}{{568.8 \times {{10}^{ - 2}}}}\]
\[ \Rightarrow {R_e} = 3563\]
Therefore the Reynolds number is 3563.
Hence option \[\left( A \right)\] is the correct answer
Note: If the Reynolds number has a high value the pipe has a turbulent flow. If the Reynolds number has a low value the pipe has a laminar flow. Numerically these values are acceptable though in general the laminar and turbulent flow can be classified according to the range.
Formula used:
To find the Reynolds number,
${R_e} = \dfrac{{\rho vL}}{\mu }$
Where,
$\rho $ is the density,
$v$ is the speed of the flow,
$L$ is the linear dimension characteristic,
$\mu $is the dynamic viscosity
Complete step by step answer:
The values are given in the question. The liquid of coefficient of the viscosity $\eta = 1$ poise, pipe of the radius $3cm$, and the rate of volume flow are $1000l/\min $.
The rate of the flow is $1000l/\min $
The value of $\pi {r^2}$is $\dfrac{1}{{60}}{m^3}/s$
Substitute all the values in the Reynolds formula. We have,
${R_e} = \dfrac{{\rho vL}}{\mu }$
Where,
$\rho $ is the density,
$v$ is the speed of the flow,
$L$ is the linear dimension characteristic,
$\mu $ is the dynamic viscosity
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{1}{{60\pi {r^2}}} \times 2r$
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{{2r}}{{60\pi {r^2}}}$
$ \Rightarrow {R_e} = \dfrac{{1000}}{{0.1}} \times \dfrac{2}{{60\pi r}}$
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\pi \times r}}$
The value of the radius is $3cm$ converting the centimeter into the meter we get,
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\pi \times 3 \times {{10}^{ - 2}}}}$
Substituting the value of $\pi$,
$ \Rightarrow {R_e} = \dfrac{{2000}}{{1.0 \times 60\left( {3.16} \right) \times 3 \times {{10}^{ - 2}}}}$
\[ \Rightarrow {R_e} = \dfrac{{2000}}{{568.8 \times {{10}^{ - 2}}}}\]
\[ \Rightarrow {R_e} = 3563\]
Therefore the Reynolds number is 3563.
Hence option \[\left( A \right)\] is the correct answer
Note: If the Reynolds number has a high value the pipe has a turbulent flow. If the Reynolds number has a low value the pipe has a laminar flow. Numerically these values are acceptable though in general the laminar and turbulent flow can be classified according to the range.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE