Answer
Verified
465.6k+ views
Hint: Here, we will find the time taken for one side journey and the time taken in return journey; and calculate the total time by adding these two.
And find the average speed using formula ${\text{Average speed = }}\dfrac{{{\text{Total distance travelled}}}}{{{\text{Total time taken}}}}$.
Complete step by step answer:
Let the distance covered by man by driving a car is d km.
Given, the speed of a car is 70 km/hr.
Let t1 be the time taken to cover a distance d km at a speed of 70 km/h, \[{t_1} = \dfrac{d}{{70}}\] hr
As \[{\text{Time = }}\dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}\]
Also given that the man covered the same distance in the return journey.
The distance covered by man in return journey is d km.
Given, the speed of the car in the return journey is 55 km/h.
Let t2 be the time take to cover a distance d km at a speed of 55 km/h, \[{t_2} = \dfrac{d}{{55}}\] hr
Total time taken for the whole journey, \[T{\text{ }} = {\text{ }}{t_1} + {\text{ }}{t_2} = \left( {\dfrac{d}{{70}} + \dfrac{d}{{55}}} \right)\]hr
$T = \dfrac{d}{5}\left( {\dfrac{1}{{14}} + \dfrac{1}{{11}}} \right)$ hr
On simplifying, we have
$T = \dfrac{d}{5}\left( {\dfrac{{11 + 14}}{{14 \times 11}}} \right)$ hr
$T = \dfrac{d}{5}\left( {\dfrac{{25}}{{154}}} \right) = \dfrac{{5d}}{{154}}$hr
Total distance travelled in the whole journey = $d + d = 2d$km
We have, total distance = 2d km and total time taken $T = \dfrac{{5d}}{{154}}$
Average speed for the whole journey, $S = \dfrac{{{\text{Total distance}}}}{{{\text{Total time}}}}$
$S = \dfrac{{2d}}{T}$
On putting values of 2d and T in $\left( {S = \dfrac{{2d}}{T}} \right)$
$S = \dfrac{{2d}}{{\dfrac{{5d}}{{154}}}}$
$S = \dfrac{{2 \times 154}}{5} = \dfrac{{308}}{5} = 61.6$ km/hr
Therefore, the average speed for the whole journey is 61.6 km/hr.
None of the given options is correct.
Note:
In this type of question always calculate time taken for different speeds and add them to get total time. Always keep in mind while solving these types of questions, \[{\text{Average speed}} \ne \dfrac{{{\text{Sum of speeds}}}}{{\text{2}}}.\]
Alternatively, we can use direct formula of average speed, i.e.${S_{av}} = \dfrac{{2{S_1}{S_2}}}{{{S_1} + {S_2}}}$, where S1 and S2 are the two different speeds for covering same distance.
And find the average speed using formula ${\text{Average speed = }}\dfrac{{{\text{Total distance travelled}}}}{{{\text{Total time taken}}}}$.
Complete step by step answer:
Let the distance covered by man by driving a car is d km.
Given, the speed of a car is 70 km/hr.
Let t1 be the time taken to cover a distance d km at a speed of 70 km/h, \[{t_1} = \dfrac{d}{{70}}\] hr
As \[{\text{Time = }}\dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}\]
Also given that the man covered the same distance in the return journey.
The distance covered by man in return journey is d km.
Given, the speed of the car in the return journey is 55 km/h.
Let t2 be the time take to cover a distance d km at a speed of 55 km/h, \[{t_2} = \dfrac{d}{{55}}\] hr
Total time taken for the whole journey, \[T{\text{ }} = {\text{ }}{t_1} + {\text{ }}{t_2} = \left( {\dfrac{d}{{70}} + \dfrac{d}{{55}}} \right)\]hr
$T = \dfrac{d}{5}\left( {\dfrac{1}{{14}} + \dfrac{1}{{11}}} \right)$ hr
On simplifying, we have
$T = \dfrac{d}{5}\left( {\dfrac{{11 + 14}}{{14 \times 11}}} \right)$ hr
$T = \dfrac{d}{5}\left( {\dfrac{{25}}{{154}}} \right) = \dfrac{{5d}}{{154}}$hr
Total distance travelled in the whole journey = $d + d = 2d$km
We have, total distance = 2d km and total time taken $T = \dfrac{{5d}}{{154}}$
Average speed for the whole journey, $S = \dfrac{{{\text{Total distance}}}}{{{\text{Total time}}}}$
$S = \dfrac{{2d}}{T}$
On putting values of 2d and T in $\left( {S = \dfrac{{2d}}{T}} \right)$
$S = \dfrac{{2d}}{{\dfrac{{5d}}{{154}}}}$
$S = \dfrac{{2 \times 154}}{5} = \dfrac{{308}}{5} = 61.6$ km/hr
Therefore, the average speed for the whole journey is 61.6 km/hr.
None of the given options is correct.
Note:
In this type of question always calculate time taken for different speeds and add them to get total time. Always keep in mind while solving these types of questions, \[{\text{Average speed}} \ne \dfrac{{{\text{Sum of speeds}}}}{{\text{2}}}.\]
Alternatively, we can use direct formula of average speed, i.e.${S_{av}} = \dfrac{{2{S_1}{S_2}}}{{{S_1} + {S_2}}}$, where S1 and S2 are the two different speeds for covering same distance.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE