
A man covers a certain distance by car driving at 70 km/hr and he returns to the starting point riding on a scooter at 55 km/hr. Find his average speed for the whole journey.
A. 62.5 km/hr
B. 62.8 km/hr
C. 63.6 km/hr
D. 64.6 km/hr
Answer
590.4k+ views
Hint: Here, we will find the time taken for one side journey and the time taken in return journey; and calculate the total time by adding these two.
And find the average speed using formula ${\text{Average speed = }}\dfrac{{{\text{Total distance travelled}}}}{{{\text{Total time taken}}}}$.
Complete step by step answer:
Let the distance covered by man by driving a car is d km.
Given, the speed of a car is 70 km/hr.
Let t1 be the time taken to cover a distance d km at a speed of 70 km/h, \[{t_1} = \dfrac{d}{{70}}\] hr
As \[{\text{Time = }}\dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}\]
Also given that the man covered the same distance in the return journey.
The distance covered by man in return journey is d km.
Given, the speed of the car in the return journey is 55 km/h.
Let t2 be the time take to cover a distance d km at a speed of 55 km/h, \[{t_2} = \dfrac{d}{{55}}\] hr
Total time taken for the whole journey, \[T{\text{ }} = {\text{ }}{t_1} + {\text{ }}{t_2} = \left( {\dfrac{d}{{70}} + \dfrac{d}{{55}}} \right)\]hr
$T = \dfrac{d}{5}\left( {\dfrac{1}{{14}} + \dfrac{1}{{11}}} \right)$ hr
On simplifying, we have
$T = \dfrac{d}{5}\left( {\dfrac{{11 + 14}}{{14 \times 11}}} \right)$ hr
$T = \dfrac{d}{5}\left( {\dfrac{{25}}{{154}}} \right) = \dfrac{{5d}}{{154}}$hr
Total distance travelled in the whole journey = $d + d = 2d$km
We have, total distance = 2d km and total time taken $T = \dfrac{{5d}}{{154}}$
Average speed for the whole journey, $S = \dfrac{{{\text{Total distance}}}}{{{\text{Total time}}}}$
$S = \dfrac{{2d}}{T}$
On putting values of 2d and T in $\left( {S = \dfrac{{2d}}{T}} \right)$
$S = \dfrac{{2d}}{{\dfrac{{5d}}{{154}}}}$
$S = \dfrac{{2 \times 154}}{5} = \dfrac{{308}}{5} = 61.6$ km/hr
Therefore, the average speed for the whole journey is 61.6 km/hr.
None of the given options is correct.
Note:
In this type of question always calculate time taken for different speeds and add them to get total time. Always keep in mind while solving these types of questions, \[{\text{Average speed}} \ne \dfrac{{{\text{Sum of speeds}}}}{{\text{2}}}.\]
Alternatively, we can use direct formula of average speed, i.e.${S_{av}} = \dfrac{{2{S_1}{S_2}}}{{{S_1} + {S_2}}}$, where S1 and S2 are the two different speeds for covering same distance.
And find the average speed using formula ${\text{Average speed = }}\dfrac{{{\text{Total distance travelled}}}}{{{\text{Total time taken}}}}$.
Complete step by step answer:
Let the distance covered by man by driving a car is d km.
Given, the speed of a car is 70 km/hr.
Let t1 be the time taken to cover a distance d km at a speed of 70 km/h, \[{t_1} = \dfrac{d}{{70}}\] hr
As \[{\text{Time = }}\dfrac{{{\text{Distance}}}}{{{\text{Speed}}}}\]
Also given that the man covered the same distance in the return journey.
The distance covered by man in return journey is d km.
Given, the speed of the car in the return journey is 55 km/h.
Let t2 be the time take to cover a distance d km at a speed of 55 km/h, \[{t_2} = \dfrac{d}{{55}}\] hr
Total time taken for the whole journey, \[T{\text{ }} = {\text{ }}{t_1} + {\text{ }}{t_2} = \left( {\dfrac{d}{{70}} + \dfrac{d}{{55}}} \right)\]hr
$T = \dfrac{d}{5}\left( {\dfrac{1}{{14}} + \dfrac{1}{{11}}} \right)$ hr
On simplifying, we have
$T = \dfrac{d}{5}\left( {\dfrac{{11 + 14}}{{14 \times 11}}} \right)$ hr
$T = \dfrac{d}{5}\left( {\dfrac{{25}}{{154}}} \right) = \dfrac{{5d}}{{154}}$hr
Total distance travelled in the whole journey = $d + d = 2d$km
We have, total distance = 2d km and total time taken $T = \dfrac{{5d}}{{154}}$
Average speed for the whole journey, $S = \dfrac{{{\text{Total distance}}}}{{{\text{Total time}}}}$
$S = \dfrac{{2d}}{T}$
On putting values of 2d and T in $\left( {S = \dfrac{{2d}}{T}} \right)$
$S = \dfrac{{2d}}{{\dfrac{{5d}}{{154}}}}$
$S = \dfrac{{2 \times 154}}{5} = \dfrac{{308}}{5} = 61.6$ km/hr
Therefore, the average speed for the whole journey is 61.6 km/hr.
None of the given options is correct.
Note:
In this type of question always calculate time taken for different speeds and add them to get total time. Always keep in mind while solving these types of questions, \[{\text{Average speed}} \ne \dfrac{{{\text{Sum of speeds}}}}{{\text{2}}}.\]
Alternatively, we can use direct formula of average speed, i.e.${S_{av}} = \dfrac{{2{S_1}{S_2}}}{{{S_1} + {S_2}}}$, where S1 and S2 are the two different speeds for covering same distance.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Bluebaby syndrome is caused by A Cadmium pollution class 7 biology CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

Write a summary of the poem the quality of mercy by class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE


