
A man generates a symmetrical pulse in a string by moving his hand up and down. At $t = 0$ , the point in his hand moves downwards from mean position. The pulse travels with speed $3\,m{s^{ - 1}}$ on the string and his hand passes $6$ times in each second from the mean position. Then the point on the string at a distance $3\,m$ with reach its upper extreme first time at $t = $
A. $1.25$
B. $1\,s$
C. $\dfrac{{13}}{{12}}s$
D. $\dfrac{{23}}{{24}}s$
Answer
465.6k+ views
Hint: a man will generate a symmetrical pulse in a string by moving his hand up and down. To calculate the time at which the point on the string at a distance $3\,m$ will reach its upper extreme, we will first calculate the wavelength of the pulse. The formula for calculating the wavelength of the pulse is given below.
Formula used:
The formula for calculating the wavelength is given by
$V = f\lambda $
Here, $V$ is the speed of the pulse, $f$ is the frequency and $\lambda $ is the wavelength of the pulse.
Complete step by step answer:
Consider a man that will generate a symmetrical pulse in a string by moving his hand up and down. If the hand will pass $6$ times from the mean position in one second, then the string will create a $3$ wavelength or $3$ cycle in one second. This means that the frequency of the wave is $3Hz$ .Also, the speed of the pulse, $v = \,3\,m{s^{ - 1}}$.And the frequency of the pulse, $3Hz$. The wave showing the pulse is given below
Now, to calculate the wavelength of the pulse, we will use the following formula
$V = f\lambda $
$ \Rightarrow \,\lambda = \dfrac{V}{f}$
$ \Rightarrow \,\lambda = \dfrac{{3\,m{s^{ - 1}}}}{{3\,Hz}}$
$ \Rightarrow \,\lambda = 1m$
From this value, we can say that if the wavelength of the pulse is $\lambda = 1m$ then the point having $3\,m$ distance will be located at $6th$ position.Therefore, to reach the upper extreme, the pulse has to travel a $\dfrac{{3\lambda }}{4}$ distance.
Now, as we know, time taken by the pulse to travel a distance $3\lambda \, = \,1\,\sec $.
Also, the time taken by the pulse to travel a distance $\lambda \, = \,\dfrac{1}{3}\,\sec $.
Therefore, the time taken by the pulse to travel a distance,
$\dfrac{{3\lambda }}{4}\, = \,\dfrac{1}{3} \times \dfrac{3}{4}$
$ \Rightarrow \,\dfrac{1}{4}\,\sec $
$ \therefore \,0.25\,\sec $
Therefore, the time taken by the pulse to reach its upper stream is $0.25\,\sec $.
Hence, option A is the correct option.
Note:The pulse shape at any time $t$ will be the same when it is repeated. Also, there will be three crests and three troughs formed by the pulse as the pulse will be three cycles per second. As it is forming three cycles, therefore, the frequency will be in relation to the cycle.
Formula used:
The formula for calculating the wavelength is given by
$V = f\lambda $
Here, $V$ is the speed of the pulse, $f$ is the frequency and $\lambda $ is the wavelength of the pulse.
Complete step by step answer:
Consider a man that will generate a symmetrical pulse in a string by moving his hand up and down. If the hand will pass $6$ times from the mean position in one second, then the string will create a $3$ wavelength or $3$ cycle in one second. This means that the frequency of the wave is $3Hz$ .Also, the speed of the pulse, $v = \,3\,m{s^{ - 1}}$.And the frequency of the pulse, $3Hz$. The wave showing the pulse is given below

Now, to calculate the wavelength of the pulse, we will use the following formula
$V = f\lambda $
$ \Rightarrow \,\lambda = \dfrac{V}{f}$
$ \Rightarrow \,\lambda = \dfrac{{3\,m{s^{ - 1}}}}{{3\,Hz}}$
$ \Rightarrow \,\lambda = 1m$
From this value, we can say that if the wavelength of the pulse is $\lambda = 1m$ then the point having $3\,m$ distance will be located at $6th$ position.Therefore, to reach the upper extreme, the pulse has to travel a $\dfrac{{3\lambda }}{4}$ distance.
Now, as we know, time taken by the pulse to travel a distance $3\lambda \, = \,1\,\sec $.
Also, the time taken by the pulse to travel a distance $\lambda \, = \,\dfrac{1}{3}\,\sec $.
Therefore, the time taken by the pulse to travel a distance,
$\dfrac{{3\lambda }}{4}\, = \,\dfrac{1}{3} \times \dfrac{3}{4}$
$ \Rightarrow \,\dfrac{1}{4}\,\sec $
$ \therefore \,0.25\,\sec $
Therefore, the time taken by the pulse to reach its upper stream is $0.25\,\sec $.
Hence, option A is the correct option.
Note:The pulse shape at any time $t$ will be the same when it is repeated. Also, there will be three crests and three troughs formed by the pulse as the pulse will be three cycles per second. As it is forming three cycles, therefore, the frequency will be in relation to the cycle.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
