Answer
Verified
468.6k+ views
Hint: When you read such kinds of problems where ratios are mentioned, assume the total to be $1$ part and divide the given ratios accordingly and calculate the solution. In case you get confused by this approach, you can also convert the ratios into percentages by taking the total as $100\% $.
Complete step-by-step answer:
Let the total property of the man to be assumed as x. Now this x consists of wife’s share, son’s share and the daughter’s share too. We need to calculate the individual share value as we are provided with the proportions in which the property is divided.
Then,
Given that, the wife's share is the half of the total property. Divide the entire property value with the two to get the value of the wife's share. This can be calculated by the following mathematical form:
Wife’s property share $ = \dfrac{1}{2} \times x$
Given that, the son's share is the one-third of the total property. Divide the entire property value with the three to get the value of the son's share. This can be calculated by the following mathematical form:
Son’s property share $ = \dfrac{1}{3} \times x$
Now, in order to find the daughter’s share we can deduct the shares of wife’s and son’s from the total share as the property is only being shared among those three people.
Daughter’s property $ = x - (\dfrac{1}{2} \times x) - (\dfrac{1}{3} \times x)$
$
= x - x(\dfrac{1}{2} + \dfrac{1}{3}) \\
= x - \dfrac{{5x}}{6} \\
= \dfrac{x}{6} \\
$
As per the data given the problem, we have a particular value. So, by equating the above derived equation with that value we can get the value of x
But in problem it is equal to the $15,000$ Rs.
So,
$
\dfrac{x}{6} = 15,000 \\
x = 6 \times 15,000 \\
x = 90,000 \\
$
Now, we obtained the value of total share. So, now we can calculate everyone’s share by using the above derived equations by substituting the value we obtained in those equations.
The value of the property that man has is $90,000$Rs.
Wife’s share $ = \dfrac{1}{2} \times x$
$
= \dfrac{1}{2} \times 90000 \\
= 45,000 \\
$
Son’s share $ = \dfrac{1}{3} \times x$
$
= \dfrac{1}{3} \times 90000 \\
= 30000 \\
$
So, the required shares of wife and son are $45,000$ Rs and $30,000$ Rs respectively.(Option D)
Note: This problem can be solved without using any variable also by assuming total to be $1$ part and rest all as ratios. Before solving such ratio problems firstly look at options so that you are able to eliminate some options according to the ratio given. For example, the wife's share is more than the son's share in this problem, so the options that are not following this can be eliminated.
Complete step-by-step answer:
Let the total property of the man to be assumed as x. Now this x consists of wife’s share, son’s share and the daughter’s share too. We need to calculate the individual share value as we are provided with the proportions in which the property is divided.
Then,
Given that, the wife's share is the half of the total property. Divide the entire property value with the two to get the value of the wife's share. This can be calculated by the following mathematical form:
Wife’s property share $ = \dfrac{1}{2} \times x$
Given that, the son's share is the one-third of the total property. Divide the entire property value with the three to get the value of the son's share. This can be calculated by the following mathematical form:
Son’s property share $ = \dfrac{1}{3} \times x$
Now, in order to find the daughter’s share we can deduct the shares of wife’s and son’s from the total share as the property is only being shared among those three people.
Daughter’s property $ = x - (\dfrac{1}{2} \times x) - (\dfrac{1}{3} \times x)$
$
= x - x(\dfrac{1}{2} + \dfrac{1}{3}) \\
= x - \dfrac{{5x}}{6} \\
= \dfrac{x}{6} \\
$
As per the data given the problem, we have a particular value. So, by equating the above derived equation with that value we can get the value of x
But in problem it is equal to the $15,000$ Rs.
So,
$
\dfrac{x}{6} = 15,000 \\
x = 6 \times 15,000 \\
x = 90,000 \\
$
Now, we obtained the value of total share. So, now we can calculate everyone’s share by using the above derived equations by substituting the value we obtained in those equations.
The value of the property that man has is $90,000$Rs.
Wife’s share $ = \dfrac{1}{2} \times x$
$
= \dfrac{1}{2} \times 90000 \\
= 45,000 \\
$
Son’s share $ = \dfrac{1}{3} \times x$
$
= \dfrac{1}{3} \times 90000 \\
= 30000 \\
$
So, the required shares of wife and son are $45,000$ Rs and $30,000$ Rs respectively.(Option D)
Note: This problem can be solved without using any variable also by assuming total to be $1$ part and rest all as ratios. Before solving such ratio problems firstly look at options so that you are able to eliminate some options according to the ratio given. For example, the wife's share is more than the son's share in this problem, so the options that are not following this can be eliminated.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE