Answer
Verified
501k+ views
Hint: Try to find the selling price of one chair as well as one table.
Let the total price of one chair be Rs. x and that of one table to be Rs. Y.
Now it is given to us that Profit on a chair = 25%
$\therefore $ Selling Price of one chair= x+$\frac{{25x}}{{100}} = \frac{{125x}}{{100}}$
Now again we have given that Profit on a table =10%
$\therefore $Selling price of one table=y+$\frac{{10y}}{{100}} = \frac{{110y}}{{100}}$
Now according to the given condition we have given that the sum of the selling price of one chair and one table is 1520.
$\therefore $$\frac{{125x}}{{100}}$+$\frac{{110y}}{{100}}$=1520
Now since the denominator is same so we can add our numerators and on doing the cross multiplication, we have
$ \Rightarrow $ 125x+110y=152000
And hence on further simplification, we have
25x+22y=30400…………………(i)
Now according to the question if the profit on a chair is 10% and on a table is 25%
Then the total selling price is Rs.1535.
$\therefore $$\left( {x + \frac{{10x}}{{100}}} \right) + \left( {y + \frac{{25y}}{{100}}} \right) = 1535$
And hence again on taking the LCM and than on doing the cross multiplication, we have
110x+125y=153500
And hence on further simplification we have
22x+25y=30700.........................(ii)
Now on subtracting the equation (ii) from (i), we have
3x-3y=-300
And hence on taking 3 common and doing the simplification, we have
$ \Rightarrow $x - y=-100……………………..(iii)
Similarly on adding equation (i) and (ii), we have
47x+47y=61100
And hence on taking 47 common from both sides and on doing the simplification, we have
$ \Rightarrow $x + y =1300…………………(iv)
Now on adding equations (iii) and (iv) we have
2x=1200
And hence x=600
Now on putting the value of x in equation (iii) we get
$ \Rightarrow $600-y=-100
$ \Rightarrow $y=100+600=700
Hence the cost price of a chair is Rs. 600 and cost price of a table is Rs. 700.
Note: In this type of question first of all we have to find the selling price of the given materials and than according to the given condition we can find the cost price of the materials.
Let the total price of one chair be Rs. x and that of one table to be Rs. Y.
Now it is given to us that Profit on a chair = 25%
$\therefore $ Selling Price of one chair= x+$\frac{{25x}}{{100}} = \frac{{125x}}{{100}}$
Now again we have given that Profit on a table =10%
$\therefore $Selling price of one table=y+$\frac{{10y}}{{100}} = \frac{{110y}}{{100}}$
Now according to the given condition we have given that the sum of the selling price of one chair and one table is 1520.
$\therefore $$\frac{{125x}}{{100}}$+$\frac{{110y}}{{100}}$=1520
Now since the denominator is same so we can add our numerators and on doing the cross multiplication, we have
$ \Rightarrow $ 125x+110y=152000
And hence on further simplification, we have
25x+22y=30400…………………(i)
Now according to the question if the profit on a chair is 10% and on a table is 25%
Then the total selling price is Rs.1535.
$\therefore $$\left( {x + \frac{{10x}}{{100}}} \right) + \left( {y + \frac{{25y}}{{100}}} \right) = 1535$
And hence again on taking the LCM and than on doing the cross multiplication, we have
110x+125y=153500
And hence on further simplification we have
22x+25y=30700.........................(ii)
Now on subtracting the equation (ii) from (i), we have
3x-3y=-300
And hence on taking 3 common and doing the simplification, we have
$ \Rightarrow $x - y=-100……………………..(iii)
Similarly on adding equation (i) and (ii), we have
47x+47y=61100
And hence on taking 47 common from both sides and on doing the simplification, we have
$ \Rightarrow $x + y =1300…………………(iv)
Now on adding equations (iii) and (iv) we have
2x=1200
And hence x=600
Now on putting the value of x in equation (iii) we get
$ \Rightarrow $600-y=-100
$ \Rightarrow $y=100+600=700
Hence the cost price of a chair is Rs. 600 and cost price of a table is Rs. 700.
Note: In this type of question first of all we have to find the selling price of the given materials and than according to the given condition we can find the cost price of the materials.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE