Answer
Verified
501.3k+ views
Hint: The production of TV is increasing by a fixed same amount every year, the production of TV in subsequent years will form an increasing A.P.
Since the production increases uniformly by a fixed number every year, therefore the sequence formed by the production in different years is an A.P.
Let $a$ be the first term and $d$ be the common difference of A.P. $a$ denotes the production in first year and $d$ denotes the number of units by which the production increases every year. So, we have:
$ \Rightarrow {a_3} = 600{\text{ and }}{a_7} = 700$.
We know that the general term of A.P. is ${T_n} = a + \left( {n - 1} \right)d$. Applying this for above equation, we have:
$
\Rightarrow a + \left( {3 - 1} \right)d = 600, \\
\Rightarrow a + 2d = 600 .....(i) \\
\Rightarrow a + \left( {7 - 1} \right)d = 700, \\
\Rightarrow a + 6d = 700 .....(ii) \\
$
Subtracting equation $(i)$ from equation $(ii)$, we’ll get:
$
\Rightarrow a + 6d - a - 2d = 700 - 600, \\
\Rightarrow 4d = 100, \\
\Rightarrow d = 25 \\
$
Putting the value of $d$ in equation $(i)$, we’ll get:
$
\Rightarrow a + 50 = 600, \\
\Rightarrow a = 550 \\
$
So, the first year’s production is 550 units and it's increasing by 25 units every year.
$(i)$ The production in 10th year will be ${a_{10}}$ which is:
$
\Rightarrow {a_{10}} = a + 9d, \\
\Rightarrow {a_{10}} = 550 + 9 \times 25, \\
\Rightarrow {a_{10}} = 550 + 225, \\
\Rightarrow {a_{10}} = 775 \\
$
So, 10th years production is 775 units.
$(ii)$ Total production in the first 7 years will be the sum of the first 7 terms of A.P.
We know that the sum of first $n$ terms of A.P. is given as:
$ \Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].$
Here we have, $a = 550,d = 25{\text{ and }}n = 7$. Putting these values, we’ll get:
$
\Rightarrow {S_7} = \dfrac{7}{2}\left[ {2 \times 550 + \left( {7 - 1} \right) \times 25} \right], \\
\Rightarrow {S_7} = \dfrac{{7 \times \left( {1100 + 150} \right)}}{2}, \\
\Rightarrow {S_7} = 7 \times 625, \\
\Rightarrow {S_7} = 4375 \\
$
Thus the total production in the first 7 years is 4375 units.
Note:
Sum of first 7 terms of an A.P. can also be calculated using:
\[ \Rightarrow {S_7} = \left( {\dfrac{{{a_1} + {a_7}}}{2}} \right) \times 7\] which can be conceived as
${S_7} = \left( {\dfrac{{{\text{First term + Seventh term}}}}{2}} \right) \times {\text{Number of terms}}$
Since the production increases uniformly by a fixed number every year, therefore the sequence formed by the production in different years is an A.P.
Let $a$ be the first term and $d$ be the common difference of A.P. $a$ denotes the production in first year and $d$ denotes the number of units by which the production increases every year. So, we have:
$ \Rightarrow {a_3} = 600{\text{ and }}{a_7} = 700$.
We know that the general term of A.P. is ${T_n} = a + \left( {n - 1} \right)d$. Applying this for above equation, we have:
$
\Rightarrow a + \left( {3 - 1} \right)d = 600, \\
\Rightarrow a + 2d = 600 .....(i) \\
\Rightarrow a + \left( {7 - 1} \right)d = 700, \\
\Rightarrow a + 6d = 700 .....(ii) \\
$
Subtracting equation $(i)$ from equation $(ii)$, we’ll get:
$
\Rightarrow a + 6d - a - 2d = 700 - 600, \\
\Rightarrow 4d = 100, \\
\Rightarrow d = 25 \\
$
Putting the value of $d$ in equation $(i)$, we’ll get:
$
\Rightarrow a + 50 = 600, \\
\Rightarrow a = 550 \\
$
So, the first year’s production is 550 units and it's increasing by 25 units every year.
$(i)$ The production in 10th year will be ${a_{10}}$ which is:
$
\Rightarrow {a_{10}} = a + 9d, \\
\Rightarrow {a_{10}} = 550 + 9 \times 25, \\
\Rightarrow {a_{10}} = 550 + 225, \\
\Rightarrow {a_{10}} = 775 \\
$
So, 10th years production is 775 units.
$(ii)$ Total production in the first 7 years will be the sum of the first 7 terms of A.P.
We know that the sum of first $n$ terms of A.P. is given as:
$ \Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].$
Here we have, $a = 550,d = 25{\text{ and }}n = 7$. Putting these values, we’ll get:
$
\Rightarrow {S_7} = \dfrac{7}{2}\left[ {2 \times 550 + \left( {7 - 1} \right) \times 25} \right], \\
\Rightarrow {S_7} = \dfrac{{7 \times \left( {1100 + 150} \right)}}{2}, \\
\Rightarrow {S_7} = 7 \times 625, \\
\Rightarrow {S_7} = 4375 \\
$
Thus the total production in the first 7 years is 4375 units.
Note:
Sum of first 7 terms of an A.P. can also be calculated using:
\[ \Rightarrow {S_7} = \left( {\dfrac{{{a_1} + {a_7}}}{2}} \right) \times 7\] which can be conceived as
${S_7} = \left( {\dfrac{{{\text{First term + Seventh term}}}}{2}} \right) \times {\text{Number of terms}}$
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE