Answer
Verified
451.2k+ views
Hint: The medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the cylindrical part of the capsule and the diameter of the hemispheres are given. The volume of a cylinder having length h and radius r is given by $\pi {{r}^{2}}h$. Again , volume of a hemisphere with radius r is given by $\dfrac{2}{3}\pi {{r}^{3}}$ .
Find the individual volumes of the cylinder and the hemispheres using these formulae.
Now, note that the total volume of the capsule is the sum of the volumes of the cylinder and the hemispheres.
Complete step-by-step solution:
A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends.
The length of the cylindrical part of the capsule is 14mm, and the diameter of hemisphere is 6mm.
Therefore the total volume of the capsule is the sum of the volumes of the cylinder and the hemispheres.
The cylindrical part of the capsule has length 14mm and radius $\dfrac{6}{2}=3$mm.
We know, the volume of a cylinder having length h and radius r is given by $\pi {{r}^{2}}h$
∴ Applying the formula we find the volume of the cylinder as $\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ (3}{{\text{)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 14=126 }\!\!\pi\!\!\text{ =396m}{{\text{m}}^{3}}$ (taking π=22/7)
Again we know, volume of a hemisphere with radius r is given by $\dfrac{2}{3}\pi {{r}^{3}}$
The volume of each hemisphere with radius 3mm will be $\dfrac{2}{3}\pi {{\left( 3 \right)}^{3}}=\dfrac{2}{3}\times \pi \times 27=18\pi =56.52\text{m}{{\text{m}}^{3}}$ Therefore the total volume of the capsule is = volumes of the cylinder + volume of two hemispheres, i.e.
$\begin{align}
& 396+\left( 2\times 56.52 \right) \\
& =396+113.04 \\
& =509.04m{{m}^{3}} \\
\end{align}$
Hence, the volume of the medicine capsule is $509.04m{{m}^{3}}$.
Note:
Note the formulae of finding the volume of the following figures.
Find the individual volumes of the cylinder and the hemispheres using these formulae.
Now, note that the total volume of the capsule is the sum of the volumes of the cylinder and the hemispheres.
Complete step-by-step solution:
A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends.
The length of the cylindrical part of the capsule is 14mm, and the diameter of hemisphere is 6mm.
Therefore the total volume of the capsule is the sum of the volumes of the cylinder and the hemispheres.
The cylindrical part of the capsule has length 14mm and radius $\dfrac{6}{2}=3$mm.
We know, the volume of a cylinder having length h and radius r is given by $\pi {{r}^{2}}h$
∴ Applying the formula we find the volume of the cylinder as $\text{ }\!\!\pi\!\!\text{ }\!\!\times\!\!\text{ (3}{{\text{)}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 14=126 }\!\!\pi\!\!\text{ =396m}{{\text{m}}^{3}}$ (taking π=22/7)
Again we know, volume of a hemisphere with radius r is given by $\dfrac{2}{3}\pi {{r}^{3}}$
The volume of each hemisphere with radius 3mm will be $\dfrac{2}{3}\pi {{\left( 3 \right)}^{3}}=\dfrac{2}{3}\times \pi \times 27=18\pi =56.52\text{m}{{\text{m}}^{3}}$ Therefore the total volume of the capsule is = volumes of the cylinder + volume of two hemispheres, i.e.
$\begin{align}
& 396+\left( 2\times 56.52 \right) \\
& =396+113.04 \\
& =509.04m{{m}^{3}} \\
\end{align}$
Hence, the volume of the medicine capsule is $509.04m{{m}^{3}}$.
Note:
Note the formulae of finding the volume of the following figures.
Figure | Volume |
Cube | $a^3$ |
Cuboid | $l\times b\times h$ |
Sphere | $\dfrac{4}{3}\pi {{r}^{3}}$ |
Hemisphere | $\dfrac{2}{3}\pi {{r}^{3}}$ |
Cylinder | $\pi {{r}^{2}}h$ |
Cone | $\dfrac{1}{3}\pi {{r}^{2}}h$ . |
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is a collective noun for bees class 10 english CBSE