Answer
Verified
234k+ views
Hint:
All cells have an electrical potential difference across their plasma membrane. Membrane potential is established due to differences in ion concentration across the membrane and the selective movement of ions along the electrochemical gradient through ion-specific channels present in the membrane.
Complete step by step answer:
Excitable cells can change their membrane potential when exited. The constant membrane potential in the non-excitable cells and those of excitable cells when they are at rest is called resting membrane potential.
In animal cells, the resting potential is dictated predominantly by the K+ ions gradient. The predominant positive ion inside the cell is the K+ ions. The high intracellular concentration of K+ ions is, in part, generated by the Na+-K+ pump, which actively pumps K+ into the cell. This leads to a large concentration difference of K+ and Na+ ions across the plasma membrane, with the concentration of K+ ions being much higher inside the cell than outside and the concentration of Na+ ions higher outside the cell.
Option ‘D’ is correct
Note:
The plasma membrane, however also contains a large number of K+ leaky channels. These open channels allow potassium ions to move freely. Transfer of positive charge to the exterior leaves behind an unbalanced negative charge within the cell, thereby creating resting potential.
All cells have an electrical potential difference across their plasma membrane. Membrane potential is established due to differences in ion concentration across the membrane and the selective movement of ions along the electrochemical gradient through ion-specific channels present in the membrane.
Complete step by step answer:
Excitable cells can change their membrane potential when exited. The constant membrane potential in the non-excitable cells and those of excitable cells when they are at rest is called resting membrane potential.
In animal cells, the resting potential is dictated predominantly by the K+ ions gradient. The predominant positive ion inside the cell is the K+ ions. The high intracellular concentration of K+ ions is, in part, generated by the Na+-K+ pump, which actively pumps K+ into the cell. This leads to a large concentration difference of K+ and Na+ ions across the plasma membrane, with the concentration of K+ ions being much higher inside the cell than outside and the concentration of Na+ ions higher outside the cell.
Option ‘D’ is correct
Note:
The plasma membrane, however also contains a large number of K+ leaky channels. These open channels allow potassium ions to move freely. Transfer of positive charge to the exterior leaves behind an unbalanced negative charge within the cell, thereby creating resting potential.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
State and prove Bernoullis theorem class 11 physics CBSE
10 examples of friction in our daily life
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
What organs are located on the left side of your body class 11 biology CBSE