Answer
Verified
468.9k+ views
Hint: Think about the law of conservation of energy along with the equation for the De Broglie wavelength. Modify these equations to arrive at the correct answer.
Formula used:
Complete step by step answer:
Due to the law of conservation of energy, we know that the energy of the photon absorbed and the energies of the photons emitted is going to be the same. We will modify the equation for the De Broglie wavelength to suit our needs and use it along with the law of conservation of energies.
Let us first assume that,
$E$ = energy of absorbed photon
${{E}_{1}}$ = energy of first emitted photon
${{E}_{2}}$ = energy of second emitted photon
$\lambda $ = wavelength of absorbed photon
${{\lambda }_{1}}$ = wavelength of first emitted photon
${{\lambda }_{2}}$ = wavelength of second emitted photon
We know from the law of conservation of energies that:
\[E={{E}_{1}}+{{E}_{2}}\]
The De Broglie’s equation for wavelength states that:
\[\lambda =\frac{h}{mv}\]
Where, $m$ is the mass of the photon and $v$ is its velocity, which is equal to the speed of light $c$.
We know that, for a photon,
\[E=m{{c}^{2}}\]
Thus, modifying this equation,
\[mc\text{ or }mv=\frac{E}{c}\]
Putting this value in De Broglie’s equation we get
\[E=\frac{hc}{\lambda }\]
Now, substituting this value of $E$ in the law of conservation of energy, we get:
\[\frac{hc}{\lambda }=\frac{hc}{{{\lambda }_{1}}}+\frac{hc}{{{\lambda }_{2}}}\]
We know the values, \[\lambda =300nm\] and \[{{\lambda }_{1}}=760nm\]. Solving for \[{{\lambda }_{2}}\]:
\[\frac{1}{300} = \frac{1}{760} + \frac{1}{{{\lambda }_{2}}}\]
\[\frac{1}{{{\lambda }_{2}}} = \frac{1}{300} - \frac{1}{760}\]
\[\frac{1}{{{\lambda }_{2}}} = \frac{46}{22800}\]
\[{{\lambda }_{2}} = 495.6nm\]
Hence, comparing the answers with the given options, the correct answer is ‘(B) 496nm’.
Note: While modifying the De Broglie’s equation do not get confused amongst the values of $v$ and $c$. The former refers to the velocity of any particle, but since we are talking about photons here, velocity of the particle will always be equal to the velocity of light.
Formula used:
Complete step by step answer:
Due to the law of conservation of energy, we know that the energy of the photon absorbed and the energies of the photons emitted is going to be the same. We will modify the equation for the De Broglie wavelength to suit our needs and use it along with the law of conservation of energies.
Let us first assume that,
$E$ = energy of absorbed photon
${{E}_{1}}$ = energy of first emitted photon
${{E}_{2}}$ = energy of second emitted photon
$\lambda $ = wavelength of absorbed photon
${{\lambda }_{1}}$ = wavelength of first emitted photon
${{\lambda }_{2}}$ = wavelength of second emitted photon
We know from the law of conservation of energies that:
\[E={{E}_{1}}+{{E}_{2}}\]
The De Broglie’s equation for wavelength states that:
\[\lambda =\frac{h}{mv}\]
Where, $m$ is the mass of the photon and $v$ is its velocity, which is equal to the speed of light $c$.
We know that, for a photon,
\[E=m{{c}^{2}}\]
Thus, modifying this equation,
\[mc\text{ or }mv=\frac{E}{c}\]
Putting this value in De Broglie’s equation we get
\[E=\frac{hc}{\lambda }\]
Now, substituting this value of $E$ in the law of conservation of energy, we get:
\[\frac{hc}{\lambda }=\frac{hc}{{{\lambda }_{1}}}+\frac{hc}{{{\lambda }_{2}}}\]
We know the values, \[\lambda =300nm\] and \[{{\lambda }_{1}}=760nm\]. Solving for \[{{\lambda }_{2}}\]:
\[\frac{1}{300} = \frac{1}{760} + \frac{1}{{{\lambda }_{2}}}\]
\[\frac{1}{{{\lambda }_{2}}} = \frac{1}{300} - \frac{1}{760}\]
\[\frac{1}{{{\lambda }_{2}}} = \frac{46}{22800}\]
\[{{\lambda }_{2}} = 495.6nm\]
Hence, comparing the answers with the given options, the correct answer is ‘(B) 496nm’.
Note: While modifying the De Broglie’s equation do not get confused amongst the values of $v$ and $c$. The former refers to the velocity of any particle, but since we are talking about photons here, velocity of the particle will always be equal to the velocity of light.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers